Semi-supervised Anomaly Detection for Weakly-annotated Videos

被引:0
|
作者
El-Tahan, Khaled [1 ]
Torki, Marwan [1 ]
机构
[1] Alexandria Univ, Comp & Syst Engn Dept, Alexandria, Egypt
关键词
Semi-supervision; Pseudo Labels; Weak-supervision; Multiple Instance Learning; Anomaly Detection; Background Subtraction; Video Recognition;
D O I
10.5220/0010909600003124
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the significant challenges in surveillance anomaly detection research is the scarcity of surveillance datasets satisfying specific ethical and logistical requirements during the collection process. Weakly supervised models aim to solve those challenges by only weakly annotating surveillance videos and creating sophisticated learning techniques to optimize these models, such as Multiple Instance Learning (MIL), which maximizes the boundary between the most anomalous video clip and the least normal (false alarm) video clip using ranking loss. However, maximizing the boundary does not necessarily assign each clip its correct class. We propose a semi-supervision technique that creates pseudo labels for each correct class. Also, we investigate different video recognition models for better features representation. We evaluate our work on the UCF-Crime (Weakly Supervised) dataset and show that it almost outperforms all other approaches by only using the same simple baseline (multilayer perceptron neural network). Moreover, we incorporate different evaluation metrics to show that not only did our solution increase the AUC, but it also increased the top-1 accuracy drastically.
引用
收藏
页码:871 / 878
页数:8
相关论文
共 50 条
  • [1] Weakly Semi-supervised Detection in Lung Ultrasound Videos
    Ouyang, Jiahong
    Chen, Li
    Li, Gary Y.
    Balaraju, Naveen
    Patil, Shubham
    Mehanian, Courosh
    Kulhare, Sourabh
    Millin, Rachel
    Gregory, Kenton W.
    Gregory, Cynthia R.
    Zhu, Meihua
    Kessler, David O.
    Malia, Laurie
    Dessie, Almaz
    Rabiner, Joni
    Coneybeare, Di
    Shopsin, Bo
    Hersh, Andrew
    Madar, Cristian
    Shupp, Jeffrey
    Johnson, Laura S.
    Avila, Jacob
    Dwyer, Kristin
    Weimersheimer, Peter
    Raju, Balasundar
    Kruecker, Jochen
    Chen, Alvin
    [J]. INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2023, 2023, 13939 : 195 - 207
  • [2] An Overview of Deep Learning Based Methods for Unsupervised and Semi-Supervised Anomaly Detection in Videos
    Kiran, B. Ravi
    Thomas, Dilip Mathew
    Parakkal, Ranjith
    [J]. JOURNAL OF IMAGING, 2018, 4 (02)
  • [3] Semi-Supervised Anomaly Detection with Contrastive Regularization
    Jezequel, Loic
    Vu, Ngoc-Son
    Beaudet, Jean
    Histace, Aymeric
    [J]. 2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 2664 - 2671
  • [4] Semi-supervised Anomaly Detection with Reinforcement Learning
    Lee, Changheon
    Kim, JoonKyu
    Kang, Suk-Ju
    [J]. 2022 37TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2022), 2022, : 933 - 936
  • [5] Semi-supervised Anomaly Detection on Attributed Graphs
    Kumagai, Atsutoshi
    Iwata, Tomoharu
    Fujiwara, Yasuhiro
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [6] An Efficient Semi-Supervised SVM for Anomaly Detection
    Kim, Junae
    Montague, Paul
    [J]. 2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 2843 - 2850
  • [7] Semi-Supervised Isolation Forest for Anomaly Detection
    Stradiotti, Luca
    Perini, Lorenzo
    Davis, Jesse
    [J]. PROCEEDINGS OF THE 2024 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2024, : 670 - 678
  • [8] Semi-supervised and weakly-supervised deep neural networks and dataset for fish detection in turbid underwater videos
    Jahanbakht, Mohammad
    Azghadi, Mostafa Rahimi
    Waltham, Nathan J.
    [J]. ECOLOGICAL INFORMATICS, 2023, 78
  • [9] Weakly Supervised Anomaly Detection in Videos Considering the Openness of Events
    Zhang, Chen
    Li, Guorong
    Xu, Qianqian
    Zhang, Xinfeng
    Su, Li
    Huang, Qingming
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (11) : 21687 - 21699
  • [10] SEMI-SUPERVISED OBJECT DETECTION WITH SPARSELY ANNOTATED DATASET
    Yoon, Jihun
    Hong, Seungbum
    Choi, Min-Kook
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 719 - 723