On the Szeged and the Laplacian Szeged spectrum of a graph

被引:30
|
作者
Fath-Tabar, Gholam Hossein [2 ]
Doslic, Tomislav [1 ]
Ashrafi, Ali Reza [2 ,3 ]
机构
[1] Univ Zagreb, Fac Civil Engn, Zagreb 10000, Croatia
[2] Univ Kashan, Dept Math, Fac Sci, Kashan 8731751167, Iran
[3] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
Szeged matrix; Laplacian matrix; Laplacian Szeged matrix; Szeged eigenvalue; Laplacian Szeged eigenvalue; Szeged index; VERTEX PI; INDEXES;
D O I
10.1016/j.laa.2010.03.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a given graph G its Szeged weighting is defined by w(e) = n(u)(e)n(v)(e), where e = uv is an edge of G, n(u)(e) is the number of vertices of G closer to u than to v, and n(v)(e) is defined analogously. The adjacency matrix of a graph weighted in this way is called its Szeged matrix. In this paper we determine the spectra of Szeged matrices and their Laplacians for several families of graphs. We also present sharp upper and lower bounds on the eigenvalues of Szeged matrices of graphs. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:662 / 671
页数:10
相关论文
共 50 条
  • [1] On the Laplacian Szeged Spectrum of Paths
    Doslic, Tomislav
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 11 (01): : 57 - 63
  • [2] ON REVISED SZEGED SPECTRUM OF A GRAPH
    Habibi, Nader
    Ashrafi, Ali Reza
    TAMKANG JOURNAL OF MATHEMATICS, 2014, 45 (04): : 375 - 387
  • [3] On szeged polynomial of a graph
    Ashrafi, A. R.
    Manoochehrian, B.
    Yousefi-Azari, H.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2007, 33 (01) : 37 - 46
  • [4] WEIGHTED SZEGED INDICES OF SOME GRAPH OPERATIONS
    Pattabiraman, Kannan
    Kandan, P.
    TRANSACTIONS ON COMBINATORICS, 2016, 5 (01) : 25 - 35
  • [5] A Note on Revised Szeged Index of Graph Operations
    Dehgardi, Nasrin
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2018, 9 (01): : 57 - 63
  • [6] PI, Szeged and Revised Szeged Indices of IPR Fullerenes
    Mottaghi, Ashraf
    Mehranian, Zeinab
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2011, 2 (02): : 87 - 99
  • [7] ON THE SZEGED INDEX AND ITS NON- COMMUTING GRAPH
    Alimon, Nur Idayu
    Sarmin, Nor Haniza
    Erfanian, Ahmad
    JURNAL TEKNOLOGI-SCIENCES & ENGINEERING, 2023, 85 (03): : 105 - 110
  • [8] The szeged treebank
    Csendes, D
    Csirik, J
    Gyimóthy, T
    Kocsor, A
    TEXT, SPEECH AND DIALOGUE, PROCEEDINGS, 2005, 3658 : 123 - 131
  • [9] PI, Szeged and Edge Szeged Indices of Nanostar Dendrimers
    Ashrafi, Ali Reza
    Mirzargar, Mahsa
    UTILITAS MATHEMATICA, 2008, 77 : 249 - 255
  • [10] The Szeged and Wiener Indices for Coprime Graph of Dihedral Groups
    Alimon, N., I
    Sarmin, N. H.
    Erfanian, A.
    PROCEEDINGS OF THE 27TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM27), 2020, 2266