Reprint of Domain decomposition multigrid methods for nonlinear reaction-diffusion problems

被引:0
|
作者
Arraras, A. [1 ]
Gaspar, F. J. [2 ]
Portero, L. [1 ]
Rodrigo, C. [2 ]
机构
[1] Univ Publ Navarra, Dept Ingn Matemat & Informat, Pamplona 31006, Spain
[2] Univ Zaragoza, IUMA, Dept Matemat Aplicada, E-50009 Zaragoza, Spain
关键词
Domain decomposition; Linearly implicit method; Multigrid; Operator splitting; Pattern formation; Reaction-diffusion; FINITE-ELEMENT-METHOD; RUNGE-KUTTA METHODS; IMPLICIT EXPLICIT METHODS; NUMERICAL-SOLUTION; SPLITTING METHODS; FOURIER-ANALYSIS; SYSTEMS; SIMULATION; SCHEMES; MODEL;
D O I
10.1016/j.cnsns.2014.10.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we propose efficient discretizations for nonlinear evolutionary reaction-diffusion problems on general two-dimensional domains. The spatial domain is discretized through an unstructured coarse triangulation, which is subsequently refined via regular triangular grids. Following the method of lines approach, we first consider a finite element spatial discretization, and then use a linearly implicit splitting time integrator related to a suitable decomposition of the triangulation nodes. Such a procedure provides a linear system per internal stage. The equations corresponding to those nodes lying strictly inside the elements of the coarse triangulation can be decoupled and solved in parallel using geometric multigrid techniques. The method is unconditionally stable and computationally efficient, since it avoids the need for Schwarz-type iteration procedures. In addition, it is formulated for triangular elements, thus yielding much flexibility in the discretization of complex geometries. To illustrate its practical utility, the algorithm is shown to reproduce the pattern-forming dynamics of the Schnakenberg model. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:22 / 33
页数:12
相关论文
共 50 条
  • [1] Domain decomposition multigrid methods for nonlinear reaction-diffusion problems
    Arraras, A.
    Gaspar, F. J.
    Portero, L.
    Rodrigo, C.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (03) : 699 - 710
  • [2] Domain Decomposition Methods to Solve Reaction-Diffusion Problems in a Sectorial Domain
    Chokri, Chniti
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [3] Linearly Implicit Domain Decomposition Methods for Nonlinear Time-Dependent Reaction-Diffusion Problems
    Arraras, A.
    Portero, L.
    Jorge, J. C.
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XVIII, 2009, 70 : 267 - 274
  • [4] Parallel domain decomposition for reaction-diffusion problems
    Bercovier, M
    Volfovsky, N
    Parnas, H
    COMPUTATIONAL SCIENCE FOR THE 21ST CENTURY, 1997, : 96 - 101
  • [5] An analysis of overlapping domain decomposition methods for singularly perturbed reaction-diffusion problems
    Kumar, Sunil
    Kumar, Mukesh
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 281 : 250 - 262
  • [6] A MATCHING OF SINGULARITIES IN DOMAIN DECOMPOSITION METHODS FOR REACTION-DIFFUSION PROBLEMS WITH DISCONTINUOUS COEFFICIENTS
    Chniti, Chokri
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (01): : 23 - 37
  • [7] Extrapolated θ-methods for nonlinear reaction-diffusion problems
    Catholic Univ of Nijmegen, Nijmegen, Netherlands
    East West J Numer Math, 4 (245-262):
  • [9] Domain decomposition and multigrid methods for obstacle problems
    Tai, XC
    COMPUTATIONAL SCIENCE-ICCS 2002, PT I, PROCEEDINGS, 2002, 2329 : 345 - 352
  • [10] On the Convergence of a Multigrid Method for Linear Reaction-Diffusion Problems
    Maxim A. Olshanskii
    Arnold Reusken
    Computing, 2000, 65 : 193 - 202