Automated detection of offshore wave power using machine learning techniques

被引:2
|
作者
Aslan, Narin [1 ]
Koca, Gonca Ozmen [1 ]
Dogan, Sengul [2 ]
机构
[1] Firat Univ, Coll Technol, Dept Mechatron Engn, Elazig, Turkey
[2] Firat Univ, Coll Technol, Dept Digital Forens Engn, Elazig, Turkey
关键词
Wave power; Flow velocity; Flow direction; Regression; Extreme learning machine; Restricted Boltzmann machine; Feature selection; Artificial learning; RESTRICTED-BOLTZMANN-MACHINE; HEIGHT PREDICTION; NEURAL-NETWORKS; ENSEMBLE; MODEL; SEA;
D O I
10.1016/j.oceaneng.2022.111956
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Background: Various statistical methods are used for estimating sea state and wave characteristics using digital wave models. Several machine learning techniques help to develop the computational difficulties of these methods.Materials and methods: This study aims to estimate the wave power with Extreme Learning Machine (ELM), Regression, Restricted Boltzmann Machine (RBM), and RBM-ELM methods using nonlinear wave input param-eters at different depths. Furthermore, the performance criteria are improved by applying the Relief feature selection algorithm to these methods. The input bias and input weights for the ELM have been determined using the RBM.Results: In the RBM-based presented method, the highest estimation values were obtained using Relief feature selection and without Relief as 96.96% and 94.02%, respectively. The highest accuracy rate based on ELM is 76.86% in the estimation of wave power without Relief. In the same way, the accuracy rate with Relief was calculated as 92.16%. These values were increased to 90.10% (without Relief) and 95.73% (with Relief) using the RBM-ELM method.Conclusions: This study demonstrates that the performance of the presented methods with Relief feature selection was improved.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [1] Machine Learning Techniques for Automated Melanoma Detection
    Vocaturo, Eugenio
    Perna, Diego
    Zumpano, Ester
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 2310 - 2317
  • [2] An Automated System for ECG Arrhythmia Detection Using Machine Learning Techniques
    Sraitih, Mohamed
    Jabrane, Younes
    Hajjam El Hassani, Amir
    JOURNAL OF CLINICAL MEDICINE, 2021, 10 (22)
  • [3] Automated Detection of Polycystic Ovary Syndrome Using Machine Learning Techniques
    Abu Adla, Yasmine A.
    Raydan, Dalia G.
    Charaf, Mohammad-Zafer J.
    Saad, Roua A.
    Nasreddine, Jad
    Diab, Mohammad O.
    2021 SIXTH INTERNATIONAL CONFERENCE ON ADVANCES IN BIOMEDICAL ENGINEERING (ICABME), 2021, : 208 - 212
  • [4] Automated Detection of Retinopathy of Prematurity Using Quantum Machine Learning and Deep Learning Techniques
    Sankari, V. M. Raja
    Snekhalatha, U.
    Alasmari, Sultan
    Aslam, Shabnam Mohamed
    IEEE ACCESS, 2023, 11 : 94306 - 94321
  • [5] Partial discharge detection in power lines using automated machine learning
    Rivas, Jannery
    Boya-Lara, Carlos
    Poveda, Hector
    2022 8TH INTERNATIONAL ENGINEERING, SCIENCES AND TECHNOLOGY CONFERENCE, IESTEC, 2022, : 223 - 230
  • [6] Performance Analysis of Automated Detection of Diabetic Retinopathy Using Machine Learning and Deep Learning Techniques
    Varghese, Nimisha Raichel
    Gopan, Neethu Radha
    INNOVATIVE DATA COMMUNICATION TECHNOLOGIES AND APPLICATION, 2020, 46 : 156 - 164
  • [7] Machine Learning Techniques for Automated and Early Detection of Brain Tumor
    Zamani, Abu Sarwar
    Deepa, S.
    Meenakshi
    Kaliyaperumal, Karthikeyan
    Bangare, Manoj L.
    Ritonga, Mahyudin
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2022, 13 (03): : 412 - 420
  • [8] Horizon detection using machine learning techniques
    Fefilatyev, Sergiy
    Smarodzinava, Volha
    Hall, Lawrence O.
    Goldgof, Dmitry B.
    ICMLA 2006: 5TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2006, : 17 - +
  • [9] Anomaly Detection using Machine Learning Techniques
    Wankhede, Sonali B.
    2019 IEEE 5TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2019,
  • [10] Machine Learning Techniques for the Detection of Shockable Rhythms in Automated External Defibrillators
    Figuera, Carlos
    Irusta, Unai
    Morgado, Eduardo
    Aramendi, Elisabete
    Ayala, Unai
    Wik, Lars
    Kramer-Johansen, Jo
    Eftestol, Trygve
    Alonso-Atienza, Felipe
    PLOS ONE, 2016, 11 (07):