Seismic random noise attenuation using artificial neural network and wavelet packet analysis

被引:14
|
作者
Kimiaefar, R. [1 ]
Siahkoohi, H. R. [2 ]
Hajian, A. R. [3 ]
Kalhor, A. [4 ]
机构
[1] Islamic Azad Univ, Dept Geophys, Sci & Res Branch, Tehran, Iran
[2] Univ Tehran, Inst Geophys, Tehran, Iran
[3] Islamic Azad Univ, Dept Phys, Najafabaad Branch, Esfahan, Iran
[4] Univ Tehran, Fac New Sci & Technol, Tehran, Iran
关键词
Seismic data processing; Randomnoise attenuation; Artificial neural network; Wavelet packet analysis;
D O I
10.1007/s12517-015-2067-1
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, we present a method for attenuating background random noise and enhancing resolution of seismic data, which takes advantage of semi-automatic training of feed forward back propagation (FFBP) artificial neural network (ANN) in a multiscale domain obtained from wavelet packet analysis (WPA). The images of approximations and details of the input seismic sections are calculated and utilized to train neural network to model coherent events by an automatic algorithm. After the modeling of coherent events, the remainder data are assumed to be related to background random noise. The proposed method is applied on both synthetic and real seismic data. The results are compared with that of the adaptive Wiener filter (AWF) in synthetic shot gather and real common midpoint gather and also with that of band-pass filtering on real common offset gather. The comparison indicates substantially higher efficiency of the proposed method in attenuating random noise and enhancing seismic signals.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Seismic random noise attenuation using artificial neural network and wavelet packet analysis
    R. Kimiaefar
    H. R. Siahkoohi
    A. R. Hajian
    A. Kalhor
    Arabian Journal of Geosciences, 2016, 9
  • [2] Seismic random noise attenuation based on stationary wavelet transform and deep residual neural network
    Wu, Guoning
    Yu, Mengmeng
    Wang, Junxian
    Liu, Guochang
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2022, 57 (01): : 43 - 51
  • [3] Seismic random noise attenuation using modified wavelet thresholding
    Zhang, Qi-sheng
    Jiang, Jin-juan
    Zhai, Jin-hai
    Zhang, Xin-yue
    Yuan, Yi-jun
    Huang, Xin-wu
    ANNALS OF GEOPHYSICS, 2016, 59 (06)
  • [4] Seismic Random Noise Attenuation Using a Tied-Weights Autoencoder Neural Network
    Zhou, Huailai
    Guo, Yangqin
    Guo, Ke
    MINERALS, 2021, 11 (10)
  • [5] Random noise attenuation via convolutional neural network in seismic datasets
    Du, Ruishan
    Liu, Wenhao
    Fu, Xiaofei
    Meng, Lingdong
    Liu, Zhigang
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (12) : 9901 - 9909
  • [6] Random seismic noise attenuation data using the discrete and the continuous wavelet transforms
    Sid-Ali Ouadfeul
    Leila Aliouane
    Arabian Journal of Geosciences, 2014, 7 : 2531 - 2537
  • [7] Random seismic noise attenuation data using the discrete and the continuous wavelet transforms
    Ouadfeul, Sid-Ali
    Aliouane, Leila
    ARABIAN JOURNAL OF GEOSCIENCES, 2014, 7 (07) : 2531 - 2537
  • [8] Random Noise Attenuation Based on Residual Convolutional Neural Network in Seismic Datasets
    Yang, Liuqing
    Chen, Wei
    Liu, Wei
    Zha, Bei
    Zhu, Linqi
    IEEE ACCESS, 2020, 8 : 30271 - 30286
  • [9] Residual Learning of Deep Convolutional Neural Network for Seismic Random Noise Attenuation
    Wang, Feng
    Chen, Shengchang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (08) : 1314 - 1318
  • [10] Unsupervised Seismic Random Noise Attenuation Based on Deep Convolutional Neural Network
    Zhang, Mi
    Liu, Yang
    Chen, Yangkang
    IEEE ACCESS, 2019, 7 : 179810 - 179822