Embedding human heuristics in machine-learning-enabled probe microscopy

被引:16
|
作者
Gordon, Oliver M. [1 ]
Junqueira, Filipe L. Q. [1 ]
Moriarty, Philip J. [1 ]
机构
[1] Univ Nottingham, Sch Phys & Astron, Univ Pk, Nottingham NG7 2RD, England
来源
基金
英国工程与自然科学研究理事会;
关键词
STM; SPM; automated STM; convolutional neural networks; real time machine learning; STM tip state; SCANNING-TUNNELING-MICROSCOPY; ATOMIC-FORCE MICROSCOPY; REMOVAL; ROBUST;
D O I
10.1088/2632-2153/ab42ec
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Scanning probe microscopists generally do not rely on complete images to assess the quality of data acquired during a scan. Instead, assessments of the state of the tip apex, which not only determines the resolution in any scanning probe technique, but can also generate a wide array of frustrating artefacts, are carried out in real time on the basis of a few lines of an image (and, typically, their associated line profiles.) The very small number of machine learning approaches to probe microscopy published to date, however, involve classifications based on full images. Given that data acquisition is the most time-consuming task during routine tip conditioning, automated methods are thus currently extremely slow in comparison to the tried-and-trusted strategies and heuristics used routinely by probe microscopists. Here, we explore various strategies by which different STM image classes (arising from changes in the tip state) can be correctly identified from partial scans. By employing a secondary temporal network and a rolling window of a small group of individual scanlines, we find that tip assessment is possible with a small fraction of a complete image. We achieve this with little-to-no performance penalty-or, indeed, markedly improved performance in some cases-and introduce a protocol to detect the state of the tip apex in real time.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Machine-Learning-Enabled Thermochemistry Estimator
    Xie, Tianjun
    Wittreich, Gerhard R.
    Curnan, Matthew T.
    Gu, Geun Ho
    Seals, Kayla N.
    Tolbert, Justin S.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024,
  • [2] Machine-learning-enabled plasma modeling and prediction
    Faraji, Farbod
    Reza, Maryam
    Knoll, Aaron
    AIAA SCITECH 2024 FORUM, 2024,
  • [3] Machine-Learning-Enabled Foil Design Assistant
    Kostas, Konstantinos V.
    Manousaridou, Maria
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (07)
  • [4] Machine-learning-enabled metasurface for direction of arrival estimation
    Huang, Min
    Zheng, Bin
    Cai, Tong
    Li, Xiaofeng
    Liu, Jian
    Qian, Chao
    Chen, Hongsheng
    NANOPHOTONICS, 2022, 11 (09) : 2001 - 2010
  • [5] Machine-Learning-Enabled Automatic Sonic Shear Processing
    Liang, Lin
    Lei, Ting
    PETROPHYSICS, 2021, 62 (03): : 282 - 295
  • [6] A machine-learning-enabled smart neckband for monitoring dietary intake
    Park, Taewoong
    Mahmud, Talha Ibn
    Lee, Junsang
    Hong, Seokkyoon
    Park, Jae Young
    Ji, Yuhyun
    Chang, Taehoo
    Yi, Jonghun
    Kim, Min Ku
    Patel, Rita R.
    Kim, Dong Rip
    Kim, Young L.
    Lee, Hyowon
    Zhu, Fengqing
    Lee, Chi Hwan
    PNAS NEXUS, 2024, 3 (05):
  • [7] Machine-Learning-Enabled Multimode Fiber Specklegram Sensors: A Review
    Newaz, Asif
    Faruque, Md Omar
    Al Mahmud, Rabiul
    Sagor, Rakibul Hasan
    Khan, Mohammed Zahed Mustafa
    IEEE SENSORS JOURNAL, 2023, 23 (18) : 20937 - 20950
  • [8] Machine-Learning-Enabled Vectorial Opto-Magnetization Orientation
    Yan, Weichao
    Nie, Zhongquan
    Zeng, Xunwen
    Dai, Guohong
    Cai, Mengqiang
    Shen, Yun
    Deng, Xiaohua
    ANNALEN DER PHYSIK, 2022, 534 (01)
  • [9] Computational Framework for Machine-Learning-Enabled 13C Fluxomics
    Wu, Chao
    Yu, Jianping
    Guarnieri, Michael
    Xiong, Wei
    ACS SYNTHETIC BIOLOGY, 2022, 11 (01): : 103 - 115
  • [10] Machine-Learning-Enabled Ligand Screening for Cs/Sr Crystallizing Separation
    Wang, Bingbing
    Zhang, Zhiyuan
    Dong, Yue
    Qiu, Yuqing
    Ren, Junyu
    Bi, Kexin
    Ji, Xu
    Liu, Chong
    Zhou, Li
    Dai, Yiyang
    INORGANIC CHEMISTRY, 2023, 62 (33) : 13293 - 13303