Influence of Hydrophobic Coating on Freeze-Thaw Cycle Resistance of Cement Mortar

被引:8
|
作者
Song, Zijian [1 ,2 ]
Lu, Zhongyuan [1 ]
Lai, Zhenyu [1 ]
机构
[1] Southwest Univ Sci & Technol, State Key Lab Environm Friendly Energy Mat, Sch Mat Sci & Engn, Mianyang 621010, Sichuan, Peoples R China
[2] Mianyang Vocat & Tech Coll, Mianyang 621000, Sichuan, Peoples R China
关键词
FROST-RESISTANCE; FLY-ASH; MECHANICAL-PROPERTIES; SILICA FUME; CONCRETE; SURFACE; DURABILITY; PERFORMANCE; METAKAOLIN; STRENGTH;
D O I
10.1155/2019/8979864
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Due to the porous characteristics of cement-based materials, they are often corroded by salt solutions, which results in decreased durability, especially against damage under freeze-thaw cycles (FTCs). Improving surface properties is an effective way to improve the durability of these materials. In this study, a hydrophobic coating was applied to the surface of cement mortar by chemical modification of low surface energy materials. Fourier transform infrared spectroscopy (FT-IR) showed that low surface energy substances are linked to hydration products through chemical bonds. A water contact angle test indicates that the surface of cement mortar changed from hydrophilic (theta = 14 degrees) to hydrophobic (theta = 140 degrees) after chemical modification. The cumulative water uptake of hydrophobic samples decreased by 90%. Meanwhile, the wear resistance of the hydrophobic coatings was excellent. Compared with the baseline sample, mass loss rate, flexural strength, and compressive strength of hydrophobic coating samples increased several-fold in the FTC test. Microstructural changes of the mortar were characterized by scanning electron microscopy. The results show that a hydrophobic coating can significantly improve the freeze-thaw resistance of cement-based materials. The formation of a hydrophobic layer on the surface of cement-based materials can improve their durability. The research results not only have applications in civil engineering but will also have great impact in the restoration of historic structures.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Sulfate Freeze-Thaw Resistance of Magnesium Potassium Phosphate Cement Mortar
    Yang, Bin
    Ji, Rong-Jian
    Lan, Qian
    Yang, Jian-Ming
    Xu, Jun
    MATERIALS, 2022, 15 (09)
  • [2] Influence of Carbon Dioxide Curing on the Corrosion Resistance of Reinforced Cement Mortar under the External Erosion of NaCl Freeze-Thaw Cycle
    Zhu, Jing
    Liu, Shaotong
    Song, Lizhuo
    Qu, Zijian
    Wang, Hui
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [3] THE EFFECT OF SEALERS ON THE FREEZE-THAW RESISTANCE OF MORTAR
    LITVAN, GG
    CEMENT AND CONCRETE RESEARCH, 1992, 22 (06) : 1141 - 1147
  • [4] Influence of a novel hydrophobic agent on freeze-thaw resistance and microstructure of concrete
    Zhang, Bo
    Li, Qingbin
    Niu, Xujing
    Yang, Lin
    Hu, Yu
    Zhang, Jinliang
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 269
  • [5] Freeze-thaw cycling damage evolution of additive cement mortar
    Liu, Taoying
    Zhang, Chaoyang
    Zhou, Keping
    Tian, Yonggang
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2021, 25 (11) : 2089 - 2110
  • [6] FATIGUE AND FREEZE-THAW RESISTANCE OF EPOXY MORTAR.
    Biswas, Mrinmay
    Ghattas, Omar N.
    Vladimirou, Hercules
    1985,
  • [7] Experimental study on freeze-thaw resistance of mortar: An attempt to modify hydrophobic materials with hydrophobic nano-silica
    Pang, Yuyang
    Wang, Hailiang
    Yang, Lin
    Tang, Qun
    Li, Haofei
    Zhang, Jinliang
    JOURNAL OF BUILDING ENGINEERING, 2024, 95
  • [8] Sulfate Freeze-Thaw Resistance of Magnesium Potassium Phosphate Cement Mortar according to Hydration Age
    Ji, Rong-Jian
    Li, Tao
    Yang, Jian-Ming
    Xu, Jun
    MATERIALS, 2022, 15 (12)
  • [9] Behaviour of Cement and Polymer Mortar Materials to Rapid Freeze-Thaw Cycling
    Ribeiro, M. C. S.
    Juvandes, L. F. P.
    Rodrigues, J. D.
    Ferreira, A. J. M.
    Marques, A. T.
    ADVANCED MATERIALS FORUM V, PT 1 AND 2, 2010, 636-637 : 1329 - +
  • [10] INFLUENCE OF PRESATURATION AND FREEZE-THAW TEST CONDITIONS ON LENGTH CHANGES OF PORTLAND-CEMENT MORTAR
    CHANDRA, S
    XU, A
    CEMENT AND CONCRETE RESEARCH, 1992, 22 (04) : 515 - 524