A fully segmented 3D anatomical atlas of a lizard brain

被引:8
|
作者
Hoops, Daniel [1 ,2 ]
Weng, Hanyi [1 ]
Shahid, Ayesha [1 ]
Skorzewski, Philip [1 ]
Janke, Andrew L. [3 ]
Lerch, Jason P. [1 ,2 ,4 ]
Sled, John G. [1 ,2 ]
机构
[1] Hosp Sick Children, Mouse Imaging Ctr, Toronto, ON, Canada
[2] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
[3] Univ Queensland, Ctr Adv Imaging, Brisbane, Qld, Australia
[4] Univ Oxford, FMRIB Nuffield Dept Clin Neurosci, Wellcome Ctr Integrat Neuroimaging, Oxford, England
来源
BRAIN STRUCTURE & FUNCTION | 2021年 / 226卷 / 06期
关键词
Reptile; Magnetic resonance imaging; Agamid; Evolutionary neuroscience; Segmentation; Registration; STEREOTAXIC ATLAS; FOREBRAIN ATLAS; MRI; DIENCEPHALON; EVOLUTION;
D O I
10.1007/s00429-021-02282-z
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
As the relevance of lizards in evolutionary neuroscience increases, so does the need for more accurate anatomical references. Moreover, the use of magnetic resonance imaging (MRI) in evolutionary neuroscience is becoming more widespread; this represents a fundamental methodological shift that opens new avenues of investigative possibility but also poses new challenges. Here, we aim to facilitate this shift by providing a three-dimensional segmentation atlas of the tawny dragon brain. The tawny dragon (Ctenophorus decresii) is an Australian lizard of increasing importance as a model system in ecology and, as a member of the agamid lizards, in evolution. Based on a consensus average 3D image generated from the MRIs of 13 male tawny dragon heads, we identify and segment 224 structures visible across the entire lizard brain. We describe the relevance of this atlas to the field of evolutionary neuroscience and propose further experiments for which this atlas can provide the foundation. This advance in defining lizard neuroanatomy will facilitate numerous studies in evolutionary neuroscience. The atlas is available for download as a supplementary material to this manuscript and through the Open Science Framework (OSF; https://doi.org/10.17605/OSF.IO/UJENQ).
引用
收藏
页码:1727 / 1741
页数:15
相关论文
共 50 条
  • [1] A fully segmented 3D anatomical atlas of a lizard brain
    Daniel Hoops
    Hanyi Weng
    Ayesha Shahid
    Philip Skorzewski
    Andrew L. Janke
    Jason P. Lerch
    John G. Sled
    Brain Structure and Function, 2021, 226 : 1727 - 1741
  • [2] A 3D MRI-based atlas of a lizard brain
    Hoops, Daniel
    Desfilis, Ester
    Ullmann, Jeremy F. P.
    Janke, Andrew L.
    Stait-Gardner, Timothy
    Devenyi, Gabriel A.
    Price, William S.
    Medina, Loreta
    Whiting, Martin J.
    Keogh, J. Scott
    JOURNAL OF COMPARATIVE NEUROLOGY, 2018, 526 (16) : 2511 - 2547
  • [3] ELASTICALLY DEFORMING 3D ATLAS TO MATCH ANATOMICAL BRAIN IMAGES
    GEE, JC
    REIVICH, M
    BAJCSY, R
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1993, 17 (02) : 225 - 236
  • [4] 3D anatomical atlas applied to breast
    Leite, Alysson
    Brasil, Lourdes
    Gasparini, Marina
    Parente, Marina
    Lamas, Janice
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2012, 39 (1-4) : 451 - 455
  • [5] A 3D Human Brain Atlas
    Thelen, Sebastian
    Meyer, Joerg
    Ebert, Achim
    Hagen, Hans
    MODELLING THE PHYSIOLOGICAL HUMAN, 2009, 5903 : 173 - +
  • [6] Common Atlas Format and 3D Brain Atlas Reconstructor: Infrastructure for Constructing 3D Brain Atlases
    Majka, Piotr
    Kublik, Ewa
    Furga, Grzegorz
    Wojcik, Daniel Krzysztof
    NEUROINFORMATICS, 2012, 10 (02) : 181 - 197
  • [7] Common Atlas Format and 3D Brain Atlas Reconstructor: Infrastructure for Constructing 3D Brain Atlases
    Piotr Majka
    Ewa Kublik
    Grzegorz Furga
    Daniel Krzysztof Wójcik
    Neuroinformatics, 2012, 10 : 181 - 197
  • [9] Segmented images and 3D images for studying the anatomical structures in MRIs
    Lee, YS
    Chung, MS
    Cho, JH
    MEDICAL IMAGING 2004: VISUALIZATION, IMAGE-GUIDED PROCEDURES, AND DISPLAY, 2004, 5367 : 538 - 549
  • [10] The Brain/MINDS 3D digital marmoset brain atlas
    Woodward, Alexander
    Hashikawa, Tsutomu
    Maeda, Masahide
    Kaneko, Takaaki
    Hikishima, Keigo
    Iriki, Atsushi
    Okano, Hideyuki
    Yamaguchi, Yoko
    SCIENTIFIC DATA, 2018, 5