A Deep Learning Approach on Surrogate Model Optimization of a Cryogenic NGL Recovery Unit Operation

被引:1
|
作者
Zhu, Wenbo [1 ]
Chebeir, Jorge [1 ]
Webb, Zachary [1 ]
Romagnoli, Jose [1 ]
机构
[1] Louisiana State Univ, Dept Chem Engn, Baton Rouge, LA 70803 USA
关键词
Cryogenic expansion unit; Deep learning; Dynamic process simulation; Surrogate model;
D O I
10.1016/B978-0-12-823377-1.50215-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Natural gas liquids (NGL) are utilized in nearly all sectors of the economy such as feedstock for petrochemical plants and blended for vehicles fuel. In this work, the operation of a cryogenic expansion unit for the extraction of NGL is optimized through the implementation of data-driven techniques. The proposed approach is based on an optimization framework that integrates dynamic process simulations with two deep learning based surrogate models. The first model utilizes a recurrent neural network (RNN) based surrogate model to disclose the dynamics involved in the process. The second regression model is built to generate profit predictions of the process. The integration of these models allows the determination of the process operating conditions that maximize the hourly profit. Results from two case studies show the capabilities of the proposed optimization framework to find optimal operating conditions and improve the process profits.
引用
收藏
页码:1285 / 1290
页数:6
相关论文
共 50 条
  • [1] Operation optimization of a cryogenic NGL recovery unit using deep learning based surrogate modeling
    Zhu, Wenbo
    Chebeir, Jorge
    Romagnoli, Jose A.
    COMPUTERS & CHEMICAL ENGINEERING, 2020, 137 (137)
  • [2] An optimization of capital and operating alternatives in a NGL recovery unit
    Mehrpooya, Mehdi
    Gharagheizi, Farhad
    Vatani, Ali
    CHEMICAL ENGINEERING & TECHNOLOGY, 2006, 29 (12) : 1469 - 1480
  • [3] A Deep Learning Surrogate Model for Topology Optimization
    Barmada, Sami
    Fontana, Nunzia
    Formisano, Alessandro
    Thomopulos, Dimitri
    Tucci, Mauro
    IEEE TRANSACTIONS ON MAGNETICS, 2021, 57 (06)
  • [4] Aerodynamic shape optimization of gas turbines: a deep learning surrogate model approach
    Vahid Esfahanian
    Mohammad Javad Izadi
    Hosein Bashi
    Mehran Ansari
    Alireza Tavakoli
    Mohammad Kordi
    Structural and Multidisciplinary Optimization, 2024, 67
  • [5] Aerodynamic shape optimization of gas turbines: a deep learning surrogate model approach
    Esfahanian, Vahid
    Izadi, Mohammad Javad
    Bashi, Hosein
    Ansari, Mehran
    Tavakoli, Alireza
    Kordi, Mohammad
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2024, 67 (01)
  • [6] Surrogate model enabled deep reinforcement learning for hybrid energy community operation
    Wang, Xiaodi
    Liu, Youbo
    Zhao, Junbo
    Liu, Chang
    Liu, Junyong
    Yan, Jinyue
    APPLIED ENERGY, 2021, 289
  • [7] Deep Reinforcement Learning-Based Operation of Distribution Systems Using Surrogate Model
    Bu, Van -Hai
    Zarrabian, Sina
    Su, Wencong
    2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM, 2023,
  • [8] Optimal Operation of Cryogenic Calorimeters Through Deep Reinforcement Learning
    Angloher G.
    Banik S.
    Benato G.
    Bento A.
    Bertolini A.
    Breier R.
    Bucci C.
    Burkhart J.
    Canonica L.
    D’Addabbo A.
    Di Lorenzo S.
    Einfalt L.
    Erb A.
    v. Feilitzsch F.
    Fichtinger S.
    Fuchs D.
    Garai A.
    Ghete V.M.
    Gorla P.
    Guillaumon P.V.
    Gupta S.
    Hauff D.
    Ješkovský M.
    Jochum J.
    Kaznacheeva M.
    Kinast A.
    Kuckuk S.
    Kluck H.
    Kraus H.
    Langenkämper A.
    Mancuso M.
    Marini L.
    Mauri B.
    Meyer L.
    Mokina V.
    Niedermayer K.
    Olmi M.
    Ortmann T.
    Pagliarone C.
    Pattavina L.
    Petricca F.
    Potzel W.
    Povinec P.
    Pröbst F.
    Pucci F.
    Reindl F.
    Rothe J.
    Schäffner K.
    Schieck J.
    Schönert S.
    Computing and Software for Big Science, 2024, 8 (1)
  • [9] Crew recovery optimization with deep learning and column generation for sustainable airline operation management
    Herekoglu, Ahmet
    Kabak, Ozgur
    ANNALS OF OPERATIONS RESEARCH, 2024, 342 (01) : 399 - 427
  • [10] Iterative surrogate model optimization (ISMO): An active learning algorithm for PDE constrained optimization with deep neural networks
    Lye, Kjetil O.
    Mishra, Siddhartha
    Ray, Deep
    Chandrashekar, Praveen
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 374