Automatic deep learning-based myocardial infarction segmentation from delayed enhancement MRI

被引:0
|
作者
Chen, Zhihao [1 ]
Lalande, Alain [2 ,3 ]
Salomon, Michel [1 ]
Decourselle, Thomas [4 ]
Pommier, Thibaut [6 ]
Qayyum, Abdul [2 ]
Shi, Jixi [1 ,5 ]
Perrot, Gilles [1 ]
Couturier, Raphael [1 ]
机构
[1] Univ Bourgogne Franche Comte, FEMTO ST Inst, UMR6174, CNRS, Belfort, France
[2] Univ Bourgogne Franche Comte, ImViA Lab, EA7535, Dijon, France
[3] Univ Hosp Dijon, Dept Med Imaging, Dijon, France
[4] CASIS Co, Quetigny, France
[5] Univ Normandie, ESIGELEC, EA4353, IRSEEM, Rouen, France
[6] Univ Hosp Dijon, Dept Cardiol, Dijon, France
关键词
CNN; Semantic segmentation; DE-MRI; Myocardial infarction; Adaptive framework; LEFT-VENTRICLE; NETWORKS;
D O I
10.1016/j.compmedimag.2021.102014
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Delayed Enhancement cardiac MRI (DE-MRI) has become indispensable for the diagnosis of myocardial diseases. However, to quantify the disease severity, doctors need time to manually annotate the scar and myocardium. To address this issue, in this paper we propose an automatic myocardial infarction segmentation approach on the left ventricle from short-axis DE-MRI based on Convolutional Neural Networks (CNN). The objective is to segment myocardial infarction on short-axis DE-MRI images of the left ventricle acquired 10 min after the in-jection of a gadolinium-based contrast agent. The segmentation of the infarction area is realized in two stages: a first CNN model finds the contour of myocardium and a second CNN model segments the infarction. Compared to the manual intra-observer and inter-observer variations for the segmentation of myocardial infarction, and to the automatic segmentation with Gaussian Mixture Model, our proposal achieves satisfying segmentation results on our dataset of 904 DE-MRI slices.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Automatic deep learning-based myocardial infarction segmentation from delayed enhancement MRI
    Chen, Zhihao
    Lalande, Alain
    Salomon, Michel
    Decourselle, Thomas
    Pommier, Thibaut
    Qayyum, Abdul
    Shi, Jixi
    Perrot, Gilles
    Couturier, Raphaël
    [J]. Computerized Medical Imaging and Graphics, 2022, 95
  • [2] A learning-based automatic spinal MRI segmentation
    Liu, Xiaoqing
    Samarabandu, Jagath
    Garvin, Greg
    Chhem, Rethy
    Li, Shuo
    [J]. MEDICAL IMAGING 2008: IMAGE PROCESSING, PTS 1-3, 2008, 6914
  • [3] Deep Learning-based Post Hoc CT Denoising for Myocardial Delayed Enhancement
    Nishii, Tatsuya
    Kobayashi, Takuma
    Tanaka, Hironori
    Kotoku, Akiyuki
    Ohta, Yasutoshi
    Morita, Yoshiaki
    Umehara, Kensuke
    Ota, Junko
    Horinouchi, Hiroki
    Ishida, Takayuki
    Fukuda, Tetsuya
    [J]. RADIOLOGY, 2022, 305 (01) : 81 - 90
  • [4] Evaluation of Deep Learning-Based Automatic Segmentation of the Pancreas
    Rigaud, B.
    Kirimli, E.
    Yedururi, S.
    Cazoulat, G.
    Anderson, B.
    McCulloch, M.
    Zaid, M.
    Elganainy, D.
    Koay, E.
    Brock, K.
    [J]. MEDICAL PHYSICS, 2021, 48 (06)
  • [5] Automatic Myocardial Segmentation by Using A Deep Learning Network in Cardiac MRI
    Curiale, Ariel H.
    Colavecchia, Flavio D.
    Kaluza, Pablo
    Isoardi, Roberto A.
    Mato, German
    [J]. 2017 XLIII LATIN AMERICAN COMPUTER CONFERENCE (CLEI), 2017,
  • [6] Automatic Spatio-Temporal Deep Learning-Based Approach for Cardiac Cine MRI Segmentation
    Ammar, Abderazzak
    Bouattane, Omar
    Youssfi, Mohamed
    [J]. NETWORKING, INTELLIGENT SYSTEMS AND SECURITY, 2022, 237 : 59 - 73
  • [7] Emidec: A Database Usable for the Automatic Evaluation of Myocardial Infarction from Delayed-Enhancement Cardiac MRI
    Lalande, Alain
    Chen, Zhihao
    Decourselle, Thomas
    Qayyum, Abdul
    Pommier, Thibaut
    Lorgis, Luc
    de la Rosa, Ezequiel
    Cochet, Alexandre
    Cottin, Yves
    Ginhac, Dominique
    Salomon, Michel
    Couturier, Raphael
    Meriaudeau, Fabrice
    [J]. DATA, 2020, 5 (04) : 1 - 8
  • [8] Deep Learning-Based Automatic Segmentation of the Proximal Femur from MR Images
    Zeng, Guodong
    Zheng, Guoyan
    [J]. INTELLIGENT ORTHOPAEDICS: ARTIFICIAL INTELLIGENCE AND SMART IMAGE-GUIDED TECHNOLOGY FOR ORTHOPAEDICS, 2018, 1093 : 73 - 79
  • [9] Deep Learning-based Model for Automatic Salt Rock Segmentation
    Li, Hong
    Hu, Qintao
    Mao, Yao
    Niu, Fanglian
    Liu, Chao
    [J]. ROCK MECHANICS AND ROCK ENGINEERING, 2022, 55 (06) : 3735 - 3747
  • [10] Deep Learning-based Model for Automatic Salt Rock Segmentation
    Hong Li
    Qintao Hu
    Yao Mao
    Fanglian Niu
    Chao Liu
    [J]. Rock Mechanics and Rock Engineering, 2022, 55 : 3735 - 3747