On the turbulent Prandtl number in homogeneous stably stratified turbulence

被引:91
|
作者
Venayagamoorthy, Subhas K. [1 ,2 ]
Stretch, Derek D. [2 ]
机构
[1] Colorado State Univ, Dept Civil & Environm Engn, Ft Collins, CO 80523 USA
[2] Univ KwaZulu Natal, Sch Civil Engn, ZA-4041 Durban, South Africa
关键词
GRID-GENERATED TURBULENCE; EVOLUTION; PARAMETERIZATION; TRANSPORT; FLUX; HEAT;
D O I
10.1017/S002211200999293X
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, we derive a general relationship for the turbulent Prandtl number Pr-t for homogeneous stably stratified turbulence from the turbulent kinetic energy and scalar variance equations. A formulation for the turbulent Prandtl number, Pr-t is developed in terms of a mixing length scale L-M and an overturning length scale L-E, the ratio of the mechanical (turbulent kinetic energy) decay time scale T-L to scalar decay time scale T-rho and the gradient Richardson number Ri. We show that Our formulation for Pr-t is appropriate even for non-stationary (developing) stratified flows, since it does not include the reversible contributions in both the turbulent kinetic energy production and buoyancy fluxes that drive the time variations in the flow. Our analysis of direct numerical simulation (DNS) data of homogeneous sheared turbulence shows that the ratio L-M/L-E approximate to 1 for weakly stratified flows. We show that in the limit of zero stratification, the turbulent Prandtl number is equal to the inverse of the ratio of the mechanical time scale to the scalar time scale, T-L/T-rho. We use the stably stratified DNS data of Shih et al. (J. Fluid Mech., vol. 412, 2000, pp. 1-20; J. Fluid Mech., vol. 525, 2005, pp. 193-214) to propose a new parameterization for Pr-t in terms of the gradient Richardson number Ri. The formulation presented here provides a general framework for calculating Pr, that will be useful for turbulence closure schemes in numerical models.
引用
收藏
页码:359 / 369
页数:11
相关论文
共 50 条
  • [1] ON THE TURBULENT PRANDTL NUMBER IN STABLY STRATIFIED TURBULENCE BY SECOND ORDER MODELS
    Naifer, S.
    Bouzaiane, M.
    [J]. JOURNAL OF THERMAL ENGINEERING, 2020, 6 (03): : 369 - 380
  • [2] On the turbulent prandtl number in a stably stratified atmospheric boundary layer
    Kurbatskii, A. F.
    Kurbatskaya, L. I.
    [J]. IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2010, 46 (02) : 169 - 177
  • [3] On the turbulent prandtl number in a stably stratified atmospheric boundary layer
    A. F. Kurbatskii
    L. I. Kurbatskaya
    [J]. Izvestiya, Atmospheric and Oceanic Physics, 2010, 46 : 169 - 177
  • [4] Evaluation of turbulent Prandtl (Schmidt) number parameterizations for stably stratified environmental flows
    Elliott, Zachary A.
    Venayagamoorthy, Subhas K.
    [J]. DYNAMICS OF ATMOSPHERES AND OCEANS, 2011, 51 (03) : 137 - 150
  • [5] Prandtl number dependence of stratified turbulence
    Legaspi, Jesse D.
    Waite, Michael L.
    [J]. JOURNAL OF FLUID MECHANICS, 2020, 903 (903)
  • [6] Diapycnal diffusivity, turbulent Prandtl number and mixing efficiency in Boussinesq stratified turbulence
    Salehipour, Hesam
    Peltier, W. R.
    [J]. JOURNAL OF FLUID MECHANICS, 2015, 775 : 464 - 500
  • [7] ON THE MODELING OF HOMOGENEOUS TURBULENCE IN A STABLY STRATIFIED FLOW
    SOMMER, TP
    SO, RMC
    [J]. PHYSICS OF FLUIDS, 1995, 7 (11) : 2766 - 2777
  • [8] Numerical study of turbulent diffusion in homogeneous stably stratified turbulence using linear analysis
    Jaouabi, Abdallah
    Lili, Taieb
    [J]. COMPTES RENDUS MECANIQUE, 2011, 339 (09): : 616 - 623
  • [9] Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations
    Shih, LH
    Koseff, JR
    Ivey, GN
    Ferziger, JH
    [J]. JOURNAL OF FLUID MECHANICS, 2005, 525 : 193 - 214
  • [10] Regimes of stratified turbulence at low Prandtl number
    Shah, Kasturi
    Chini, Gregory P.
    Caulfield, Colm-Cille P.
    Garaud, Pascale
    [J]. Journal of Fluid Mechanics, 2024, 998