An Iterative Method for Time-Fractional Swift-Hohenberg Equation

被引:18
|
作者
Li, Wenjin [1 ]
Pang, Yanni [2 ]
机构
[1] Jilin Univ Finance & Econ, Sch Appl Math, Changchun 130117, Jilin, Peoples R China
[2] Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
关键词
HOMOTOPY ANALYSIS METHOD; PARTIAL-DIFFERENTIAL-EQUATIONS; APPROXIMATE SOLUTION; TRANSFORM METHOD;
D O I
10.1155/2018/2405432
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a type of iterative method and apply it to time-fractional Swift-Hohenberg equation with initial value. Using this iterative method, we obtain the approximate analytic solutions with numerical figures to initial value problems, which indicates that such iterative method is effective and simple in constructing approximate solutions to Cauchy problems of time-fractional differential equations.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Time-fractional nonlinear Swift-Hohenberg equation: Analysis and numerical simulation
    Zahra, W. K.
    Nasr, M. A.
    Baleanu, Dumitru
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (06) : 4491 - 4510
  • [2] Analytical methods for solving the time-fractional Swift-Hohenberg (S-H) equation
    Khan, Najeeb Alam
    Khan, Nasir-Uddin
    Ayaz, Muhammad
    Mahmood, Amir
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (08) : 2182 - 2185
  • [3] Residual Power Series Method for Fractional Swift-Hohenberg Equation
    Prakasha, D. G.
    Veeresha, P.
    Baskonus, Haci Mehmet
    FRACTAL AND FRACTIONAL, 2019, 3 (01) : 1 - 16
  • [4] A SHOOTING METHOD FOR THE SWIFT-HOHENBERG EQUATION
    Tao Youshan  Zhang JizhouDept.of Appl.Math.
    Applied Mathematics:A Journal of Chinese Universities, 2002, (04) : 391 - 403
  • [5] A shooting method for the Swift-Hohenberg equation
    Tao Y.
    Zhang J.
    Applied Mathematics-A Journal of Chinese Universities, 2002, 17 (4) : 391 - 403
  • [6] Rational spline-nonstandard finite difference scheme for the solution of time-fractional Swift-Hohenberg equation
    Zahra, W. K.
    Elkholy, S. M.
    Fahmy, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 343 : 372 - 387
  • [7] On a Large Time-Stepping Method for the Swift-Hohenberg Equation
    Zhang, Zhengru
    Ma, Yuanzi
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2016, 8 (06) : 992 - 1003
  • [8] Spots in the Swift-Hohenberg Equation
    McCalla, S. G.
    Sandstede, B.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2013, 12 (02): : 831 - 877
  • [9] The stochastic Swift-Hohenberg equation
    Gao, Peng
    NONLINEARITY, 2017, 30 (09) : 3516 - 3559
  • [10] A MODIFIED SWIFT-HOHENBERG EQUATION
    Kania, Maria B.
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2011, 37 (01) : 165 - 176