High-energy aqueous Li-ion hybrid capacitor based on metal-organic-framework-mimicking insertion-type copper hexacyanoferrate and capacitive-type graphitic carbon electrodes

被引:45
|
作者
Pazhamalai, Parthiban [1 ]
Krishnamoorthy, Karthikeyan [1 ]
Sahoo, Surjit [1 ]
Kim, Sang-Jae [1 ,2 ]
机构
[1] Jeju Natl Univ, Dept Mechatron Engn, Nanomat Lab, Jeju 63243, South Korea
[2] Jeju Natl Univ, Dept Adv Convergence Sci & Technol, Jeju 63243, South Korea
基金
新加坡国家研究基金会;
关键词
Li-ion hybrid capacitor; An insertion-type electrode; Copper hexacyanoferrate; Graphitic carbon; Energy density; ONE-POT SYNTHESIS; NICKEL HEXACYANOFERRATE; POSITIVE ELECTRODE; FACILE SYNTHESIS; PERFORMANCE; GRAPHENE; SUPERCAPACITORS; NANOPARTICLES; STORAGE; NANOCUBES;
D O I
10.1016/j.jallcom.2018.06.249
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A high-performance aqueous Li-ion hybrid capacitor (LHC) using sonochemically prepared copper hexacyanoferrate (Cu-HCF) and sodium alginate-derived graphitic carbon (GC) nanoparticles are capable of serving as positive and negative electrodes, respectively, is described in this report. The electrode materials were prepared in a cost-effective manner and characterized using X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FT-IR). High-resolution transmission electron microscopy (HRTEM) and surface area measurements revealed the formation of 30- to 60-nm Cu-HCF and 40- to 60-nm GC particles with specific surface areas of 48 and 802 m(2)g(-1), respectively. Electrochemical studies including cyclic voltammetry (CV), galvanostatic charge-discharge (CD) analysis and electrochemical impedance spectroscopy (EIS) using a three-electrode configuration confirmed the presence of intercalative capacitance in the Cu-HCF electrode and double-layer capacitance in the GC electrode. Furthermore, the constructed Cu-HCF GC aqueous LHC system operates over a wide voltage window (2.2 V) and delivers a high capacitance (63.64 F g(-1)) and high energy density (42.78 Wh kg(-1)) with a good rate capability. These key features make the LHC system an ideal candidate for next-generation electrochemical energy storage devices. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1041 / 1048
页数:8
相关论文
共 3 条
  • [2] Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes
    Gebrekidan Gebresilassie Eshetu
    Heng Zhang
    Xabier Judez
    Henry Adenusi
    Michel Armand
    Stefano Passerini
    Egbert Figgemeier
    Nature Communications, 12
  • [3] Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes
    Eshetu, Gebrekidan Gebresilassie
    Zhang, Heng
    Judez, Xabier
    Adenusi, Henry
    Armand, Michel
    Passerini, Stefano
    Figgemeier, Egbert
    NATURE COMMUNICATIONS, 2021, 12 (01)