On Borell-Brascamp-Lieb Inequalities on Metric Measure Spaces

被引:6
|
作者
Bacher, Kathrin [1 ]
机构
[1] Univ Bonn, Inst Appl Math, D-53115 Bonn, Germany
关键词
Metric measure spaces; Geodesic metric measure spaces; Non-branching metric measure spaces; Curvature-dimension condition; CD(K; N); Functional inequalities; Borell-Brascamp-Lieb inequality; Brunn-Minkowski inequality; Prekopa-Leindler inequality; Stability; Stability under convergence; Isomorphisms; BRUNN-MINKOWSKI; GEOMETRY;
D O I
10.1007/s11118-009-9157-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce the notion of a Borell-Brascamp-Lieb inequality for metric measure spaces (M,d,m) denoted by BBL(K,N) for two numbers K,N aaEuro parts per thousand a"e with N a parts per thousand yenaEuro parts per thousand 1. In the first part we prove that BBL(K,N) holds true on metric measure spaces satisfying a curvature-dimension condition CD(K,N) developed and studied by Lott and Villani in (Ann Math 169:903-991, 2007) as well as by Sturm in (Acta Math 196(1):133-177, 2006). The aim of the second part is to show that BBL(K,N) is stable under convergence of metric measure spaces with respect to the L (2)-transportation distance.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [1] On Borell-Brascamp-Lieb Inequalities on Metric Measure Spaces
    Kathrin Bacher
    Potential Analysis, 2010, 33 : 1 - 15
  • [2] Equality in Borell-Brascamp-Lieb inequalities on curved spaces
    Balogh, Zoltan M.
    Kristaly, Alexandru
    ADVANCES IN MATHEMATICS, 2018, 339 : 453 - 494
  • [3] Stability for Borell-Brascamp-Lieb Inequalities
    Rossi, Andrea
    Salani, Paolo
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS, 2017, 2169 : 339 - 363
  • [4] On discrete Borell-Brascamp-Lieb inequalities
    Iglesias, David
    Yepes Nicolas, Jesus
    REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (03) : 711 - 722
  • [5] Quantitative Borell-Brascamp-Lieb Inequalities for Power Concave Functions
    Ghilli, Daria
    Salani, Paolo
    JOURNAL OF CONVEX ANALYSIS, 2017, 24 (03) : 857 - 888
  • [6] Stability for a strengthened Borell-Brascamp-Lieb inequality
    Rossi, Andrea
    Salani, Paolo
    APPLICABLE ANALYSIS, 2019, 98 (10) : 1773 - 1784
  • [7] New Sharp Gagliardo-Nirenberg-Sobolev Inequalities and an Improved Borell-Brascamp-Lieb Inequality
    Bolley, Francois
    Cordero-Erausquin, Dario
    Fujita, Yasuhiro
    Gentil, Ivan
    Guillin, Arnaud
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (10) : 3042 - 3083
  • [8] Stability of the Borell-Brascamp-Lieb Inequality for Multiple Power Concave Functions
    Qin, Meng
    Zhang, Zhuohua
    Luo, Rui
    Ren, Mengjie
    Wu, Denghui
    AXIOMS, 2024, 13 (05)
  • [9] A Riemannian interpolation inequality à la Borell, Brascamp and Lieb
    Dario Cordero-Erausquin
    Robert J. McCann
    Michael Schmuckenschläger
    Inventiones mathematicae, 2001, 146 : 219 - 257
  • [10] Brascamp-Lieb Inequalities on Compact Homogeneous Spaces
    Bramati, Roberto
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2019, 7 (01): : 130 - 157