Variable detectability in long-term population surveys of small mammals

被引:22
|
作者
Watkins, Alison Fern [1 ]
McWhirter, Judith L. [2 ]
King, Carolyn M. [1 ]
机构
[1] Univ Waikato, Dept Biol Sci, Hamilton, New Zealand
[2] Univ Waikato, Dept Math & Stat, Hamilton, New Zealand
关键词
Abundance; Density indices; Distribution; Site occupancy modelling; Small mammals; STOATS MUSTELA-ERMINEA; MICE MUS-MUSCULUS; PUREORA FOREST PARK; NEW-ZEALAND FORESTS; RATTUS-RATTUS; HOME-RANGE; SHIP RAT; CONSEQUENCES; ABUNDANCE; DYNAMICS;
D O I
10.1007/s10344-009-0308-x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Simple survey methods for small mammals, such as indices of trap captures per unit effort, are often the only practicable means of monitoring populations over the long term and at landscape scale and the only source of valuable historical data. They include two fundamental assumptions about the target populations (uniform distribution and equal detectability). Concern has often been expressed that, if these assumptions are violated, conventional density indices could give misleading results. Site occupancy analysis (SOA) can detect significantly uneven distribution of local populations (from variation in probability of occupancy) and reliability of indices of abundance (from variation in detectability) without requiring enumeration. We use this method to examine standardised capture records from long-term population surveys of non-commensal house mice (Mus musculus), ship rats (Rattus rattus), Norway rats (Rattus norvegicus) and stoats (Mustela erminea), sampled in four representative temperate forest habitats in New Zealand. Best fit models generated by SOA were consistent with (1) constant or random probability of occupancy for stoats and dynamic equilibrium probability of occupancy for most populations of mice and rats; (2) widespread site-specific variation in probability of detection, especially substantial in rats and correlated with habitat covariates; (3) direct correlations between detectability and density index in mice and rats sampled at 50 m intervals over 3 days, probably because the effects on the density index of variation in numbers available to be caught (population size) were much larger than the effects of changes in catchability (individual behaviour); (4) declines after 6 days in detectability of stoats and rats sampled at 3-400 m intervals over 10 days, attributed to a local trap-out effect. Longer-term variations in the density index were consistent with observed changes in reproductive parameters and age structure that are known to follow variations in real numbers. We conclude that violations of the assumptions of uniform distribution and equal detectability, while real, were not sufficient to prevent these data from providing information adequate for (1) short-term population assessments (2) long-term, low-level monitoring and (3) preliminary modelling.
引用
收藏
页码:261 / 274
页数:14
相关论文
共 50 条
  • [1] Variable detectability in long-term population surveys of small mammals
    Alison Fern Watkins
    Judith L. McWhirter
    Carolyn M. King
    European Journal of Wildlife Research, 2010, 56 : 261 - 274
  • [2] Long-term population dynamics of small mammals in southern taiga of Vetluga River basin
    Popov, IY
    ZOOLOGICHESKY ZHURNAL, 2000, 79 (04): : 446 - 451
  • [3] Long-term population trends of introduced mammals on an tropical island
    Haji, Julio
    Ferreguetti, Atilla
    Bovendorp, Ricardo S.
    Bueno, Rafael S.
    Goncalves, Fernando
    Galetti, Mauro
    GLOBAL ECOLOGY AND CONSERVATION, 2023, 46
  • [4] Long-term effects of precommercial thinning on small mammals in northern Maine
    Homyack, JA
    Harrison, DJ
    Krohn, WB
    FOREST ECOLOGY AND MANAGEMENT, 2005, 205 (1-3) : 43 - 57
  • [5] Small mammals as indicators of short-term and long-term disturbance in mixed prairie
    Sherry A. Leis
    David M. Leslie
    David M. Engle
    Jeffrey S. Fehmi
    Environmental Monitoring and Assessment, 2008, 137 : 75 - 84
  • [6] Small mammals as indicators of short-term and long-term disturbance in mixed prairie
    Leis, Sherry A.
    Leslie, David M., Jr.
    Engle, David M.
    Fehmi, Jeffrey S.
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2008, 137 (1-3) : 75 - 84
  • [7] Long-term responses in population dynamics and diversity of small mammals in riparian and upland habitats within an agricultural landscape
    Sullivan, Thomas P.
    Sullivan, Druscilla S.
    Sullivan, J. Hazel-rah
    ACTA THERIOLOGICA, 2014, 59 (02): : 325 - 336
  • [8] Long-term responses in population dynamics and diversity of small mammals in riparian and upland habitats within an agricultural landscape
    Thomas P. Sullivan
    Druscilla S. Sullivan
    J. Hazel-rah Sullivan
    Acta Theriologica, 2014, 59 : 325 - 336
  • [9] Long-term study of Toxoplasma gondii prevalence in small mammals (Insectivora and Rodentia)
    Hejlicek, K
    Literak, I
    FOLIA ZOOLOGICA, 1998, 47 (02) : 93 - 101
  • [10] LONG-TERM INDIVIDUAL DIETARY SURVEYS
    CHAPPELL, GM
    BRITISH JOURNAL OF NUTRITION, 1955, 9 (04) : 323 - 339