Weak equivalence of internal categories

被引:0
|
作者
Betti, R [1 ]
机构
[1] Politecn Milan, Milan, Italy
关键词
internal category; module; Morita equivalence;
D O I
10.1023/A:1008732224512
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Weak equivalence is defined as equivalence in the bicategory of modules between internal categories. It is known that two categories are weakly equivalent if and only if their Cauchy completions are equivalent. We prove that this condition can be generalized to a suitable notion of intermediate category, stable under composition with weak equivalences. Applications to categorical Morita theory are given.
引用
收藏
页码:307 / 316
页数:10
相关论文
共 50 条
  • [21] Congruence Formats for Weak Readiness Equivalence and Weak Possible Future Equivalence
    Huang, Xiaowei
    Jiao, Li
    Lu, Weiming
    COMPUTER JOURNAL, 2010, 53 (01): : 21 - 36
  • [22] CATEGORIES OF WEAK FRACTIONS
    Jacqmin, Pierre-Alain
    THEORY AND APPLICATIONS OF CATEGORIES, 2019, 34 : 1526 - 1551
  • [23] Weak topological categories
    Li, SG
    FUZZY SETS AND SYSTEMS, 1998, 93 (03) : 363 - 373
  • [24] WEAK FRAISSE CATEGORIES
    Kubis, Wieslaw
    THEORY AND APPLICATIONS OF CATEGORIES, 2022, 38
  • [25] WEAK EQUIVALENCE OF AUTOMATA
    RYSTOV, IK
    CYBERNETICS, 1990, 26 (05): : 737 - 742
  • [26] Weak Arithmetic Equivalence
    Mantilla-Soler, Guillermo
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (01): : 115 - 127
  • [27] WEAK EQUIVALENCE IN THE BALANCE
    MADDOX, J
    NATURE, 1991, 350 (6315) : 187 - 187
  • [28] KLEISLI CATEGORIES, T-CATEGORIES AND INTERNAL CATEGORIES
    Bourn, Dominique
    THEORY AND APPLICATIONS OF CATEGORIES, 2024, 41
  • [29] Internal categories in Mal'cev categories
    Gran, M
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 143 (1-3) : 221 - 229