Recent Developments in Single-Cell RNA-Seq of Microorganisms

被引:34
|
作者
Zhang, Yi [1 ,2 ]
Gao, Jiaxin [3 ,4 ]
Huang, Yanyi [1 ,2 ]
Wang, Jianbin [3 ,4 ]
机构
[1] Peking Univ, Beijing Adv Innovat Ctr Genom, Sch Life Sci, Biodynam Opt Imaging Ctr,Coll Engn, Beijing, Peoples R China
[2] Peking Univ, Coll Engn, Peking Tsinghua Ctr Life Sci, Beijing, Peoples R China
[3] Tsinghua Univ, Sch Life Sci, Beijing, Peoples R China
[4] Tsinghua Univ, Tsinghua Peking Ctr Life Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
GENE-EXPRESSION; TRANSCRIPT AMPLIFICATION; LIFE-SPAN; LANDSCAPE; MOLECULE; REVEALS; LYSIS; HETEROGENEITY; GENOMICS; FUTURE;
D O I
10.1016/j.bpj.2018.06.008
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Single-cell transcriptome analysis through next-generation sequencing (single-cell RNA-seq) has been used broadly to address important biological questions. It has proved to be very powerful, and many exciting new biological discoveries have been achieved in the last decade. Its application has greatly improved our understanding of diverse biological processes and the underlying molecular mechanisms, an understanding that would not have been achievable by conventional analysis based on bulk populations. However, so far, single-cell RNA-seq analysis has been used mostly for higher organisms. For microorganisms, single-cell RNA-seq has not been widely used, mainly because the stiff cell wall prevents effective lysis, much less starting RNA material is obtained, and the RNA lacks polyadenylated tails for universal priming of mRNA molecules. In general, the detection efficiency of current single-cell RNA-seq technologies is very low, and further development or improvement of these technologies is required for exploring the microbial world at single-cell resolution. Here, we briefly review recent developments in single-cell RNA-seq of microorganisms and discuss current challenges and future directions.
引用
收藏
页码:173 / 180
页数:8
相关论文
共 50 条
  • [1] Correlation Imputation for Single-Cell RNA-seq
    Gan, Luqin
    Vinci, Giuseppe
    Allen, Genevera I.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (05) : 465 - 482
  • [2] PRECISION AND ACCURACY IN SINGLE-CELL RNA-SEQ
    Dai, Rujia
    Zhang, Ming
    Chu, Tianyao
    Kopp, Richard
    Zhang, Chunling
    Liu, Kefu
    Wang, Yue
    Wang, Xusheng
    Chen, Chao
    Liu, Chunyu
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2024, 87 : 21 - 21
  • [3] Single-cell RNA-seq—now with protein
    Vesna Todorovic
    Nature Methods, 2017, 14 : 1028 - 1029
  • [4] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Peng, Tao
    Zhu, Qin
    Yin, Penghang
    Tan, Kai
    GENOME BIOLOGY, 2019, 20 (1)
  • [5] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Tao Peng
    Qin Zhu
    Penghang Yin
    Kai Tan
    Genome Biology, 20
  • [6] SINGLE-CELL ANALYSIS From single-cell RNA-seq to transcriptional regulation
    La Manno, Gioele
    NATURE BIOTECHNOLOGY, 2019, 37 (12) : 1421 - 1422
  • [7] Decontamination of ambient RNA in single-cell RNA-seq with DecontX
    Shiyi Yang
    Sean E. Corbett
    Yusuke Koga
    Zhe Wang
    W Evan Johnson
    Masanao Yajima
    Joshua D. Campbell
    Genome Biology, 21
  • [8] Decontamination of ambient RNA in single-cell RNA-seq with DecontX
    Yang, Shiyi
    Corbett, Sean E.
    Koga, Yusuke
    Wang, Zhe
    Johnson, W. Evan
    Yajima, Masanao
    Campbell, Joshua D.
    GENOME BIOLOGY, 2020, 21 (01)
  • [9] Single-cell RNA-seq: advances and future challenges
    Saliba, Antoine-Emmanuel
    Westermann, Alexander J.
    Gorski, Stanislaw A.
    Vogel, Joerg
    NUCLEIC ACIDS RESEARCH, 2014, 42 (14) : 8845 - 8860
  • [10] Guidelines for reporting single-cell RNA-seq experiments
    Fullgrabe, Anja
    George, Nancy
    Green, Matthew
    Nejad, Parisa
    Aronow, Bruce
    Fexova, Silvie Korena
    Fischer, Clay
    Freeberg, Mallory Ann
    Huerta, Laura
    Morrison, Norman
    Scheuermann, Richard H.
    Taylor, Deanne
    Vasilevsky, Nicole
    Clarke, Laura
    Gehlenborg, Nils
    Kent, Jim
    Marioni, John
    Teichmann, Sarah
    Brazma, Alvis
    Papatheodorou, Irene
    NATURE BIOTECHNOLOGY, 2020, 38 (12) : 1384 - 1386