Arc-Completion of 2-Colored Best Match Graphs to Binary-Explainable Best Match Graphs

被引:2
|
作者
Schaller, David [1 ,2 ,3 ]
Geiss, Manuela [4 ]
Hellmuth, Marc [5 ]
Stadler, Peter F. [1 ,2 ,3 ,6 ,7 ,8 ,9 ,10 ]
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] Univ Leipzig, Bioinformat Grp, Dept Comp Sci, D-04107 Leipzig, Germany
[3] Univ Leipzig, Interdisciplinary Ctr Bioinformat, D-04107 Leipzig, Germany
[4] Software Competence Ctr Hagenberg GmbH SCCH, A-4232 Hagenberg, Austria
[5] Stockholm Univ, Fac Sci, Dept Math, SE-10691 Stockholm, Sweden
[6] Univ Leipzig, Competence Ctr Scalable Data Serv & Solut, Leipzig Res Ctr Civilizat Dis, Res iDiv Halle Jena Leipzig,German Ctr Integrat B, D-04103 Leipzig, Germany
[7] Univ Leipzig, Leipzig Res Ctr Civilizat Dis LIFE, D-04103 Leipzig, Germany
[8] Univ Vienna, Inst Theoret Chem, A-1090 Vienna, Austria
[9] Univ Nacl Colombia, Fac Ciencias, CO-111321 Bogota, Colombia
[10] Santa Fe Inst, Santa Fe, NM 87501 USA
关键词
best matches; least resolved trees; graph completion; polynomial-time algorithm; SPECIATION; COMPLEXITY;
D O I
10.3390/a14040110
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Best match graphs (BMGs) are vertex-colored digraphs that naturally arise in mathematical phylogenetics to formalize the notion of evolutionary closest genes w.r.t. an a priori unknown phylogenetic tree. BMGs are explained by unique least resolved trees. We prove that the property of a rooted, leaf-colored tree to be least resolved for some BMG is preserved by the contraction of inner edges. For the special case of two-colored BMGs, this leads to a characterization of the least resolved trees (LRTs) of binary-explainable trees and a simple, polynomial-time algorithm for the minimum cardinality completion of the arc set of a BMG to reach a BMG that can be explained by a binary tree.
引用
收藏
页数:10
相关论文
共 16 条
  • [1] The structure of 2-colored best match graphs
    Korchmaros, Annachiara
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 304 : 397 - 416
  • [2] Best Match Graphs With Binary Trees
    Schaller, David
    Geiss, Manuela
    Hellmuth, Marc
    Stadler, Peter F. F.
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (03) : 1679 - 1690
  • [3] Best match graphs
    Geiss, Manuela
    Chavez, Edgar
    Gonzalez Laffitte, Marcos
    Lopez Sanchez, Alitzel
    Stadler, Baerbel M. R.
    Valdivia, Dulce I.
    Hellmuth, Marc
    Hernandez Rosales, Maribel
    Stadler, Peter F.
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2019, 78 (07) : 2015 - 2057
  • [4] Best match graphs
    Manuela Geiß
    Edgar Chávez
    Marcos González Laffitte
    Alitzel López Sánchez
    Bärbel M. R. Stadler
    Dulce I. Valdivia
    Marc Hellmuth
    Maribel Hernández Rosales
    Peter F. Stadler
    [J]. Journal of Mathematical Biology, 2019, 78 : 2015 - 2057
  • [5] Reciprocal best match graphs
    Manuela Geiß
    Peter F. Stadler
    Marc Hellmuth
    [J]. Journal of Mathematical Biology, 2020, 80 : 865 - 953
  • [6] Corrigendum to “Best match graphs”
    Schaller D.
    Geiß M.
    Chávez E.
    González Laffitte M.
    López Sánchez A.
    Stadler B.M.R.
    Valdivia D.I.
    Hellmuth M.
    Hernández Rosales M.
    Stadler P.F.
    [J]. Journal of Mathematical Biology, 2021, 82 (6)
  • [7] Reciprocal best match graphs
    Geiss, Manuela
    Stadler, Peter F.
    Hellmuth, Marc
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2020, 80 (03) : 865 - 953
  • [8] Quasi-best match graphs
    Korchmaros, Annachiara
    Schaller, David
    Hellmuth, Marc
    Stadler, Peter F.
    [J]. DISCRETE APPLIED MATHEMATICS, 2023, 331 : 104 - 125
  • [9] Least resolved trees for two-colored best match graphs
    Schaller, David
    Geiß, Manuela
    Hellmuth, Marc
    Stadler, Peter F.
    [J]. Journal of Graph Algorithms and Applications, 2021, 25 (01) : 397 - 416
  • [10] Complexity of modification problems for best match graphs
    Schaller, David
    Stadler, Peter F.
    Hellmuth, Marc
    [J]. THEORETICAL COMPUTER SCIENCE, 2021, 865 : 63 - 84