A constrained recursive pseudo-linear regression scheme for on-line parameter estimation in adaptive control

被引:7
|
作者
Badwe, Abhijit S. [1 ]
Singh, Angadh [1 ]
Patwardhan, Sachin C. [1 ]
Gudi, Ravindra D. [1 ]
机构
[1] Indian Inst Technol, Dept Chem Engn, Bombay 400076, Maharashtra, India
关键词
Recursive parameter estimation; Pseudo-linear regression; Constrained state estimation; Adaptive model predictive control; MODEL-PREDICTIVE CONTROL; IDENTIFICATION; SYSTEMS;
D O I
10.1016/j.jprocont.2010.02.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In adaptive control of systems with poles close to the unit circle, application of the recursive estimation techniques can lead to excursions of the poles of the identified model outside the unit circle even when the process is open loop stable These excursions can be of two types. The poles of the deterministic component of the model can drift outside unit circle even when the process has no unstable modes. Alternatively, the poles and/or zeros of the unmeasured disturbance (noise) model can drift outside the unit circle In either case, the identified model is not suitable for on-line controller adaptation In this work, a novel constrained recursive formulation is proposed for on-line parameter estimation based on the pseudo-linear regression (PLR) approach. The efficacy of the proposed approach is demonstrated by conducting experimental studies on a benchmark laboratory scale heater-mixer setup The analysis of the open and closed loop experimental results reveals that the proposed constrained parameter estimation scheme provides a systematic and computationally attractive approach to ensure that the identified model parameters are restricted to the feasible region (C) 2010 Elsevier Ltd All rights reserved.
引用
收藏
页码:559 / 572
页数:14
相关论文
共 50 条
  • [1] Adaptive control scheme for plants with time-varying structure using on-line parameter estimation
    Gonzalez, Angel
    Ordonez, Raul
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 2224 - 2229
  • [2] Adaptive Control of a Civil Aircraft Through On-Line Parameter Estimation
    Ferreres, G.
    Hardier, G.
    Seren, C.
    2016 3RD CONFERENCE ON CONTROL AND FAULT-TOLERANT SYSTEMS (SYSTOL), 2016, : 798 - 804
  • [3] Parameter estimation for pseudo-linear systems using the auxiliary model and the decomposition technique
    Ding, Feng
    Wang, Feifei
    Xu, Ling
    Hayat, Tasawar
    Alsaedi, Ahmed
    IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (03): : 390 - 400
  • [4] An on-line parameter estimation scheme for fault diagnosis
    Dinca, L
    Aldemir, T
    (SAFEPROCESS'97): FAULT DETECTION, SUPERVISION AND SAFETY FOR TECHNICAL PROCESSES 1997, VOLS 1-3, 1998, : 289 - 294
  • [5] Adaptive Control Based on an On-line Parameter Estimation of an Upper Limb Exoskeleton
    Riani, Akram
    Madani, Tarek
    El Hadri, Abdelhafid
    Benallegue, Abdelaziz
    2017 INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS (ICORR), 2017, : 695 - 701
  • [6] Adaptive pseudo-linear control for grid-supportive PV system
    Kumar, Shailendra
    Jain, Chinmay
    Singh, Bhim
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2019, 13 (09) : 1653 - 1660
  • [7] A multi-iteration pseudo-linear regression method and an adaptive disturbance model for MPC
    Xu, Zuhua
    Zhu, Yucai
    Han, Kai
    Zhao, Jun
    Qian, Jixin
    JOURNAL OF PROCESS CONTROL, 2010, 20 (04) : 384 - 395
  • [8] An Adaptive Control Technique for Motion Synchronization by On-line Estimation of a Recursive Least Square Method
    Lee, Sang-Deok
    Jung, Seul
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2018, 16 (03) : 1103 - 1111
  • [9] An Adaptive Control Technique for Motion Synchronization by On-line Estimation of a Recursive Least Square Method
    Sang-Deok Lee
    Seul Jung
    International Journal of Control, Automation and Systems, 2018, 16 : 1103 - 1111
  • [10] An on-line parameter estimation scheme for a fault diagnosis system
    Angeli, C.
    Chatzinikolaou, A.
    4TH INTERNATIONAL INDUSTRIAL SIMULATION CONFERENCE 2006, 2006, : 229 - +