Numerical study on deformations in a cracked viscoelastic body with the extended finite element method

被引:33
|
作者
Zhang, H. H. [1 ,2 ]
Rong, G. [1 ]
Li, L. X. [1 ]
机构
[1] Xi An Jiao Tong Univ, MOE Key Lab Strength & Vibrat, Dept Engn Mech, Xian 710049, Shaanxi, Peoples R China
[2] Nanchang Hangkong Univ, Sch Civil Engn & Architecture, Nanchang 330063, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
XFEM; Linear viscoelasticity; Crack; Deformations; X-FEM; GROWTH; FRACTURE; INITIATION;
D O I
10.1016/j.enganabound.2010.02.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Deformations such as crack opening and sliding displacements in a cracked viscoelastic body are numerically investigated by the extended finite element method (XFEM) The solution is carried out directly in time domain with a mesh not conforming to the crack geometry. The generalized Heaviside function is used to reflect the displacement discontinuity across a crack surface while the basis functions extracted from the viscoelastic asymptotic fields are used to manifest the gradient singularity at a crack tip. With these treatments. the XFEM formulations are derived in an incremental form In evaluating the stiffness matrix, a selective integration scheme is suggested for problems with high Poisson ratios often encountered in viscoelastic materials over different element types in the XFEM Numerical examples show that the crack opening displacement and crack sliding displacement are satisfactory (C) 2010 Elsevier Ltd All rights reserved.
引用
收藏
页码:619 / 624
页数:6
相关论文
共 50 条
  • [1] Dynamic analysis of a viscoelastic orthotropic cracked body using the extended finite element method
    Toolabi, M.
    Fallah, A. S.
    Baiz, P. M.
    Louca, L. A.
    ENGINEERING FRACTURE MECHANICS, 2013, 109 : 17 - 32
  • [2] APPLICATION OF EXTENDED FINITE ELEMENT METHOD TO CRACKED CONCRETE ELEMENTS - NUMERICAL ASPECTS
    Bobinski, J.
    Tejchman, J.
    ARCHIVES OF CIVIL ENGINEERING, 2012, 58 (04) : 409 - 431
  • [3] The eXtended finite element method for cracked hyperelastic materials: A convergence study
    Karoui, A.
    Mansouri, K.
    Renard, Y.
    Arfaoui, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 100 (03) : 222 - 242
  • [4] Study Of Numerical Problem Based On The Extended Finite Element Method
    Zhang Di
    Wang Feng
    Xu Hui
    ADVANCED MANUFACTURING TECHNOLOGY, PTS 1-4, 2012, 472-475 : 1623 - 1626
  • [5] A METHOD OF CONSTRUCTION OF THE VISCOELASTIC BODY DETERMINING RELATIONS AT THE FINITE DEFORMATIONS
    GROMOV, VG
    DOKLADY AKADEMII NAUK SSSR, 1985, 285 (01): : 69 - 73
  • [6] Numerical aspects of the extended finite element method
    Yu Tian-tang
    ROCK AND SOIL MECHANICS, 2007, 28 : 305 - 310
  • [7] Vibration analysis of cracked plates using the extended finite element method
    M. Bachene
    R. Tiberkak
    S. Rechak
    Archive of Applied Mechanics, 2009, 79 : 249 - 262
  • [8] High-order extended finite element method for cracked domains
    Laborde, P
    Pommier, J
    Renard, Y
    Salaün, M
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 64 (03) : 354 - 381
  • [9] Vibration analysis of cracked plates using the extended finite element method
    Bachene, M.
    Tiberkak, R.
    Rechak, S.
    ARCHIVE OF APPLIED MECHANICS, 2009, 79 (03) : 249 - 262
  • [10] The Extended Finite Element Method for Cracked Incompressible Hyperelastic Structures Analysis
    Zaafouri, Mehrez
    Wali, Mondher
    Abid, Said
    Jamal, Mohammad
    Dammak, Fakhreddine
    MULTIPHYSICS MODELLING AND SIMULATION FOR SYSTEMS DESIGN AND MONITORING, 2015, 2 : 531 - 540