On a finite basis problem for universal positive formulas

被引:2
|
作者
Mashevitzky, G
机构
关键词
D O I
10.1007/BF01190973
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A finite semigroup without a finite basis of collective identities has been constructed. A semigroup with a finite basis of identities, but without a finite basis of disjunctive identities has been constructed.
引用
收藏
页码:124 / 140
页数:17
相关论文
共 50 条
  • [1] PRIMITIVE POSITIVE FORMULAS PREVENTING A FINITE BASIS OF QUASI-EQUATIONS
    Casperson, David
    Hyndman, Jennifer
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2009, 19 (07) : 925 - 935
  • [2] A positive answer to the basis problem
    Paolo Terenzi
    Israel Journal of Mathematics, 1998, 104 : 51 - 124
  • [3] A positive answer to the basis problem
    Terenzi, P
    ISRAEL JOURNAL OF MATHEMATICS, 1998, 104 (1) : 51 - 124
  • [4] A finite universal SAGBI basis for the kernel of a derivation
    Kuroda, S
    OSAKA JOURNAL OF MATHEMATICS, 2004, 41 (04) : 759 - 792
  • [5] Positive universal classes in locally finite varieties
    Graetzer, G.
    Quackenbush, R. W.
    ALGEBRA UNIVERSALIS, 2010, 64 (1-2) : 1 - 13
  • [6] Positive universal classes in locally finite varieties
    G. Grätzer
    R. W. Quackenbush
    Algebra universalis, 2010, 64 : 1 - 13
  • [7] THE FINITE BASIS PROBLEM FOR KISELMAN MONOIDS
    Ashikhmin, D. N.
    Volkov, M. V.
    Zhang, Wen Ting
    DEMONSTRATIO MATHEMATICA, 2015, 48 (04) : 475 - 492
  • [8] The finite basis problem for Kauffman monoids
    Auinger, K.
    Chen, Yuzhu
    Hu, Xun
    Luo, Yanfeng
    Volkov, M. V.
    ALGEBRA UNIVERSALIS, 2015, 74 (3-4) : 333 - 350
  • [9] The finite basis problem for pseudovariety O
    Repnitskii, VB
    Volkov, MV
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 : 661 - 669
  • [10] The finite basis problem for Kauffman monoids
    K. Auinger
    Yuzhu Chen
    Xun Hu
    Yanfeng Luo
    M. V. Volkov
    Algebra universalis, 2015, 74 : 333 - 350