Machine Learning Protocol for Surface-Enhanced Raman Spectroscopy

被引:74
|
作者
Hu, Wei [1 ,2 ]
Ye, Sheng [2 ]
Zhang, Yujin [3 ]
Li, Tianduo [1 ]
Zhang, Guozhen [2 ]
Luo, Yi [2 ]
Mukamel, Shaul [4 ,5 ]
Jiang, Jun [2 ]
机构
[1] Qilu Univ Technol, Sch Chem & Pharmaceut Engn, Shandong Prov Key Lab Mol Engn, Jinan 250353, Shandong, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Sch Chem & Mat Sci, CAS Ctr Excellence Nanosci, Hefei 230026, Anhui, Peoples R China
[3] Qilu Univ Technol, Dept Phys, Sch Elect & Informat Engn, Jinan 250353, Shandong, Peoples R China
[4] Univ Calif Irvine, Dept Chem & Phys, Irvine, CA 92697 USA
[5] Univ Calif Irvine, Dept Astron, Irvine, CA 92697 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2019年 / 10卷 / 20期
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
SINGLE-MOLECULE; IDENTIFICATION;
D O I
10.1021/acs.jpclett.9b02517
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface-enhanced Raman spectroscopy (SERS) is a powerful technique that can capture the electronic-vibrational "fingerprint" of molecules on surfaces. Ab initio prediction of Raman response is a long-standing challenge because of the diversified interfacial structures. Here we show that a cost-effective machine learning (ML) random forest method can predict SERS signals of a trans-1,2-bis (4-pyridyl) ethylene (BPE) molecule adsorbed on a gold substrate. Using geometric descriptors extracted from quantum chemistry simulations of thousands of ab initio molecular dynamics conformations, the ML protocol predicts vibrational frequencies and Raman intensities. The resulting spectra agree with density functional theory calculations and experiment. Predicted SERS responses of the molecule on different surfaces, or under external fields of electric fields and solvent environment, demonstrate the good transferability of the protocol.
引用
收藏
页码:6026 / 6031
页数:11
相关论文
共 50 条
  • [1] Differential Diagnosis of Urinary Cancers by Surface-Enhanced Raman Spectroscopy and Machine Learning
    Song, Li
    Xue, Fei
    Li, Tingmiao
    Zhang, Qian
    Xu, Xuesong
    He, Chengyan
    Zhao, Bing
    Han, Xiao Xia
    Cai, Linjun
    ANALYTICAL CHEMISTRY, 2025, 97 (01) : 27 - 32
  • [2] Machine learning enabled multiplex detection of periodontal pathogens by surface-enhanced Raman spectroscopy
    Rathnayake, Rathnayake A. C.
    Zhao, Zhenghao
    McLaughlin, Nathan
    Li, Wei
    Yan, Yan
    Chen, Liaohai L.
    Xie, Qian
    Wu, Christine D.
    Mathew, Mathew T.
    Wang, Rong R.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 257
  • [3] Surface-enhanced Raman spectroscopy
    Nature Reviews Methods Primers, 1
  • [4] Surface-enhanced Raman Spectroscopy
    Tomoaki Nishino
    Analytical Sciences, 2018, 34 : 1061 - 1062
  • [5] Machine Learning for COVID-19 Determination Using Surface-Enhanced Raman Spectroscopy
    Szymborski, Tomasz R.
    Berus, Sylwia M.
    Nowicka, Ariadna B.
    Slowinski, Grzegorz
    Kaminska, Agnieszka
    BIOMEDICINES, 2024, 12 (01)
  • [6] Surface-enhanced Raman spectroscopy
    Jürgen Popp
    Thomas Mayerhöfer
    Analytical and Bioanalytical Chemistry, 2009, 394 : 1717 - 1718
  • [7] Surface-Enhanced Raman Spectroscopy
    Stiles, Paul. L.
    Dieringer, Jon A.
    Shah, Nilain C.
    Van Duyne, Richard R.
    ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, 2008, 1 (601-626) : 601 - 626
  • [8] Surface-enhanced Raman spectroscopy
    Morneau, Dominique
    NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [9] Surface-enhanced Raman spectroscopy
    Han, Xiao Xia
    Rodriguez, Rebeca S.
    Haynes, Christy L.
    Ozaki, Yukihiro
    Zhao, Bing
    NATURE REVIEWS METHODS PRIMERS, 2022, 1 (01):
  • [10] Surface-enhanced Raman spectroscopy
    Xiao Xia Han
    Rebeca S. Rodriguez
    Christy L. Haynes
    Yukihiro Ozaki
    Bing Zhao
    Nature Reviews Methods Primers, 1