A Second-Order Difference Scheme for a Singularly Perturbed Reaction-Diffusion Problem

被引:1
|
作者
Attili, Basem S. [1 ]
机构
[1] Sharjah Univ, Dept Math, Sharjah, U Arab Emirates
来源
DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATI ONS | 2013年 / 47卷
关键词
Reaction-diffusion; Three-point BVPs; Finite difference; Singularly perturbed; Exponentially fitted scheme; NUMERICAL-METHOD;
D O I
10.1007/978-1-4614-7333-6_17
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a singularly perturbed one-dimensional reaction-diffusion three-point boundary value problem. To approximate the solution numerically, we employ an exponentially fitted finite uniform difference scheme defined on a piecewise uniform Shishkin mesh which is second order and uniformly convergent independent of the perturbation parameter. We will present some numerical examples to show the efficiency of the proposed method.
引用
收藏
页码:239 / 248
页数:10
相关论文
共 50 条