Stability of solution for a mixture of thermoelastic of type III

被引:3
|
作者
Fatori, Luci Harue [1 ]
da Silva, Rafael Prado [2 ]
机构
[1] Univ Estadual Londrina, Dept Math, BR-86051990 Londrina, Brazil
[2] Univ Tecnol Fed Parana, Campus Cornelio Procopio, BR-86300000 Cornelio Procopio, Parana, Brazil
关键词
thermoelasticity type III; stability; optimality; EXPONENTIAL DECAY; DIFFUSION;
D O I
10.1002/mma.4298
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we analyze the existence, uniqueness, and asymptotic behavior of solution to the model of a thermoelastic mixture of type III. We establish sufficient conditions to guarantee the exponential decay of solutions. When the decay is not of exponential type, we prove that the solutions decay polynomially and we find the optimal polynomial decay rate. Copyright (c) 2017 John Wiley & Sons, Ltd.
引用
收藏
页码:4211 / 4221
页数:11
相关论文
共 50 条
  • [1] Structural Stability on the Boundary Coefficient of the Thermoelastic Equations of Type III
    Chen, Xuejiao
    Li, Yuanfei
    MATHEMATICS, 2022, 10 (03)
  • [2] Stability of a thermoelastic mixture with second sound
    Alves, Margareth S.
    Ferreira, Marcio V.
    Munoz Rivera, Jaime E.
    Vera Villagran, O.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2019, 24 (06) : 1692 - 1706
  • [3] Stability of thermoelastic diffusion problem of type III in spaces of different dimensions
    Aouadi, Moncef
    Passarella, Francesca
    Tibullo, Vincenzo
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2023, 103 (10):
  • [4] ON THE EXISTENCE AND STABILITY OF SOLUTIONS OF A TYPE-III THERMOELASTIC TRUNCATED TIMOSHENKO SYSTEM
    Ahmima, Afaf
    Messaoudi, Salim A.
    Alahyane, Mohamed
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (06): : 3385 - 3403
  • [5] A type III thermoelastic problem with mixtures
    Bazarra, N.
    Fernandez, J. R.
    Quintanilla, R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 389
  • [6] Analysis of a thermoelastic problem of type III
    Noelia Bazarra
    José R. Fernández
    Ramón Quintanilla
    The European Physical Journal Plus, 135
  • [7] Analysis of a thermoelastic problem of type III
    Bazarra, Noelia
    Fernandez, Jose R.
    Quintanilla, Ramon
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (06):
  • [8] Asymptotical stability for memory-type porous thermoelastic system of type III with constant time delay
    Hao, Jianghao
    Wang, Peipei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (13) : 3855 - 3865
  • [9] Analyticity of solutions in type III thermoelastic plates
    Liu, Zhuangyi
    Quintanilla, Ramon
    IMA JOURNAL OF APPLIED MATHEMATICS, 2010, 75 (03) : 356 - 365
  • [10] Waves in nonlocal thermoelastic solids of type III
    Sarkar, Nihar
    Bachher, Mitali
    Das, Narayan
    De, Soumen
    Sarkar, Nantu
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2020, 100 (04):