Scenarios modelling for forecasting day-ahead electricity prices: Case studies in Australia

被引:31
|
作者
Lu, Xin [1 ]
Qiu, Jing [1 ]
Lei, Gang [2 ]
Zhu, Jianguo [1 ,2 ]
机构
[1] Univ Sydney, Sch Elect & Informat Engn, Darlington, NSW 2008, Australia
[2] Univ Technol Sydney, Sch Elect & Data Engn, Ultimo, NSW 1994, Australia
关键词
Generative adversarial networks; Point forecasting; Probabilistic forecasting; Electricity Price; Conditions; EXTREME LEARNING-MACHINE; LSTM NEURAL-NETWORKS; WHOLESALE; ALGORITHM; MARKETS;
D O I
10.1016/j.apenergy.2021.118296
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Electricity prices in spot markets are volatile and can be affected by various factors, such as generation and demand, system contingencies, local weather patterns, bidding strategies of market participants, and uncertain renewable energy outputs. Because of these factors, electricity price forecasting is challenging. This paper proposes a scenario modeling approach to improve forecasting accuracy, conditioning time series generative adversarial networks on external factors. After data pre-processing and condition selection, a conditional TSGAN or CTSGAN is designed to forecast electricity prices. Wasserstein Distance, weights limitation, and RMSProp optimizer are used to ensure that the CTGAN training process is stable. By changing the dimensionality of random noise input, the point forecasting model can be transformed into a probabilistic forecasting model. For electricity price point forecasting, the proposed CTSGAN model has better accuracy and has better generalization ability than the TSGAN and other deep learning methods. For probabilistic forecasting, the proposed CTSGAN model can significantly improve the continuously ranked probability score and Winkler score. The effectiveness and superiority of the proposed CTSGAN forecasting model are verified by case studies.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Forecasting day-ahead electricity prices: Utilizing hourly prices
    Raviv, Eran
    Bouwman, Kees E.
    van Dijk, Dick
    ENERGY ECONOMICS, 2015, 50 : 227 - 239
  • [2] Forecasting day-ahead electricity prices with spatial dependence
    Yang, Yifan
    Guo, Ju'e
    Li, Yi
    Zhou, Jiandong
    INTERNATIONAL JOURNAL OF FORECASTING, 2024, 40 (03) : 1255 - 1270
  • [3] Forecasting Day-ahead Electricity Prices with A SARIMAX Model
    McHugh, Catherine
    Coleman, Sonya
    Kerr, Dermot
    McGlynn, Daniel
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 1523 - 1529
  • [4] The case of negative day-ahead electricity prices
    Fanone, Enzo
    Gamba, Andrea
    Prokopczuk, Marcel
    ENERGY ECONOMICS, 2013, 35 : 22 - 34
  • [5] Probabilistic Forecasting of Day-ahead Electricity Prices for the Iberian Electricity Market
    Moreira, Rui
    Bessa, Ricardo
    Gama, Joao
    2016 13TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET (EEM), 2016,
  • [6] Application of GARCH model in the forecasting of day-ahead electricity prices
    Li, Chengjun
    Zhang, Ming
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 1, PROCEEDINGS, 2007, : 99 - +
  • [7] A GARCH forecasting model to predict day-ahead electricity prices
    Garcia, RC
    Contreras, J
    van Akkeren, M
    Garcia, JBC
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2005, 20 (02) : 867 - 874
  • [8] DAY-AHEAD ELECTRICITY PRICE FORECASTING: LITHUANIAN CASE
    Bobinaite, Viktorija
    ELECTRICAL AND CONTROL TECHNOLOGIES, 2011, : 169 - 174
  • [9] Day-Ahead Electricity Prices Forecasting Using Artificial Neural Networks
    Tang, Qi
    Gu, Danzhen
    2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL II, PROCEEDINGS, 2009, : 511 - 514
  • [10] Forecasting day-ahead electricity prices using a new integrated model
    Zhang, Jin-Liang
    Zhang, Yue-Jun
    Li, De-Zhi
    Tan, Zhong-Fu
    Ji, Jian-Fei
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2019, 105 : 541 - 548