Anderson-Cheeger limits of smooth Riemannian manifolds, and other Gromov-Hausdorff limits

被引:2
|
作者
Taylor, Michael [1 ]
机构
[1] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
Gromov-Hausdorff limits; Ricci bounds; elliptic regularity; geodesic flow;
D O I
10.1007/BF02930728
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish further regularity of the C alpha and H-1,H-P limits of smooth, n-dimensional Riemannian manifolds with a lower bound on Ricci tensor and injectivity radius, and an upper bound on volume, first considered in [1]. We use this extra regularity to show that such a limit is a nonbranching geodesic space, as defined in [10], and to construct a variant of a geodesic flow for such a limit. We contrast the behavior ofsome slightly more singular limits.
引用
收藏
页码:365 / 374
页数:10
相关论文
共 50 条