New congruences modulo 5 for partition related to mock theta function ω(q)

被引:0
|
作者
Lin, Bernard L. S. [1 ]
Xiao, Jiejuan [1 ]
机构
[1] Jimei Univ, Sch Sci, Xiamen 361021, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Partition; Mock theta functions; congruence; Ramanujan's identity;
D O I
10.1007/s13226-021-00078-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p(omega)(n) be the number of partitions of n in which each odd part is less than twice the smallest part, and assume that p(omega)(0) = 0. Andrews, Dixit, and Yee proved that the generating function of p(omega)(n) equals q(omega)(q), where omega(q) is one of the third order mock theta functions. Many scholars have studied the arithmetic properties of p(omega)(n). For example, Waldherr proved that p(omega)(40n + 28) p(omega)(40n + 36) 0(mod 5) by using the theory of Maass forms, which was later proved once again in an elementary method by Andrews, Passary, Sellers, and Yee. In this paper, we shall establish four new congruences modulo 5 for p(omega)(n).
引用
收藏
页码:141 / 148
页数:8
相关论文
共 50 条
  • [1] New congruences modulo 9 for the coefficients of Gordon-McIntosh's mock theta function ξ(q)
    Yao, Olivia X. M.
    QUAESTIONES MATHEMATICAE, 2024, 47 (02) : 239 - 248
  • [2] Congruences for partition functions related to mock theta functions
    Chern, Shane
    Hao, Li-Jun
    RAMANUJAN JOURNAL, 2019, 48 (02): : 369 - 384
  • [3] Congruences for partition functions related to mock theta functions
    Shane Chern
    Li-Jun Hao
    The Ramanujan Journal, 2019, 48 : 369 - 384
  • [4] Congruences for the coefficients of the mock theta function (q)
    Zhang, Wenlong
    Shi, Ji
    RAMANUJAN JOURNAL, 2019, 49 (02): : 257 - 267
  • [5] A mock theta function identity related to the partition rank modulo 3 and 9
    Chan, Song Heng
    Hong, Nankun
    Jerry
    Lovejoy, Jeremy
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2021, 17 (02) : 311 - 327
  • [6] Some New Congruences Modulo 5 for the General Partition Function
    B. R. Srivatsa Kumar
    D. Shruthi
    Russian Mathematics, 2020, 64 : 73 - 78
  • [7] Some New Congruences Modulo 5 for the General Partition Function
    Srivatsa Kumar, B. R.
    Shruthi
    Ranganatha, D.
    RUSSIAN MATHEMATICS, 2020, 64 (07) : 73 - 78
  • [8] Congruences modulo 4 and 8 for Ramanujan's sixth-order mock theta function ρ(q)
    Hu, Yueya
    Liu, Eric H.
    Yao, Olivia X. M.
    RAMANUJAN JOURNAL, 2025, 66 (04):
  • [9] Congruences for the coefficients of the Gordon and McIntosh mock theta function ξ(q)
    da Silva, Robson
    Sellers, James A.
    RAMANUJAN JOURNAL, 2022, 58 (03): : 815 - 834
  • [10] Arithmetic properties for a partition function related to the Ramanujan/Watson mock theta function ω(q)
    Xia, Ernest X. W.
    RAMANUJAN JOURNAL, 2018, 46 (02): : 545 - 562