Bounded Extremal and Cauchy-Laplace Problems on the Sphere and Shell

被引:14
|
作者
Atfeh, Bilal [2 ]
Baratchart, Laurent [2 ]
Leblond, Juliette [2 ]
Partington, Jonathan R. [1 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
[2] INRIA, F-06902 Sophia Antipolis, France
基金
英国工程与自然科学研究理事会;
关键词
Harmonic functions; Hardy classes; Extremal problems; Inverse Dirichlet-Neumann problems; CONSTRAINED APPROXIMATION; HARDY-APPROXIMATION; RIESZ TRANSFORMS; SUBSETS;
D O I
10.1007/s00041-009-9110-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we develop a theory of approximating general vector fields on subsets of the sphere in a"e (n) by harmonic gradients from the Hardy space H (p) of the ball, 1 < p < a. This theory is constructive for p=2, enabling us to solve approximate recovery problems for harmonic functions from incomplete boundary values. An application is given to Dirichlet-Neumann inverse problems for n=3, which are of practical importance in medical engineering. The method is illustrated by two numerical examples.
引用
收藏
页码:177 / 203
页数:27
相关论文
共 50 条
  • [1] Bounded Extremal and Cauchy–Laplace Problems on the Sphere and Shell
    Bilal Atfeh
    Laurent Baratchart
    Juliette Leblond
    Jonathan R. Partington
    Journal of Fourier Analysis and Applications, 2010, 16 : 177 - 203
  • [2] A cauchy-laplace multifractal wavelet model for network redundant traffic
    Xing, Ling
    Ma, Qiang
    Xu, Lei
    Jiang, Chun-Xiao
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2015, 38 (05): : 54 - 57
  • [3] Problems on Extremal Decomposition of the Riemann Sphere
    G. V. Kuz'mina
    Journal of Mathematical Sciences, 2003, 118 (1) : 4880 - 4894
  • [4] A CONVERSE OF CAUCHY THEOREM AND APPLICATIONS TO EXTREMAL PROBLEMS
    READ, AH
    ACTA MATHEMATICA, 1958, 100 (1-2) : 1 - 22
  • [5] FRACTIONAL CAUCHY PROBLEMS ON BOUNDED DOMAINS
    Meerschaert, Mark M.
    Nane, Erkan
    Vellaisamy, P.
    ANNALS OF PROBABILITY, 2009, 37 (03): : 979 - 1007
  • [6] Cauchy problems for Laplace equation on compact sets
    Titarenko, VN
    Yagola, AG
    INVERSE PROBLEMS IN ENGINEERING, 2002, 10 (03): : 235 - 254
  • [7] BOUNDED MODULES, EXTREMAL PROBLEMS, AND A CURVATURE INEQUALITY
    MISRA, G
    SASTRY, NSN
    JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (01) : 118 - 134
  • [8] Extremal problems for transversals in graphs with bounded degree
    Szabo, Tibor
    Tardos, Gabor
    COMBINATORICA, 2006, 26 (03) : 333 - 351
  • [9] MAGNETIC MOMENT ESTIMATION AND BOUNDED EXTREMAL PROBLEMS
    Baratghart, Laurent
    Chevillard, Sylvain
    Hardin, Douglas
    Leblond, Juliette
    Lima, Eduardo Andrade
    Marmorat, Jean-Paul
    INVERSE PROBLEMS AND IMAGING, 2019, 13 (01) : 39 - 67