Maximal Biconnected Subgraphs of Random Planar Graphs

被引:18
|
作者
Panagiotou, Konstantinos [1 ]
Steger, Angelika [2 ]
机构
[1] Max Planck Inst Informat, Dept Algorithms & Complex 1, D-66123 Saarbrucken, Germany
[2] ETH, Inst Theoret Comp Sci, CH-8092 Zurich, Switzerland
关键词
Theory; Graphs with constraints; planar graphs; random structures; COMPONENTS;
D O I
10.1145/1721837.1721847
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let C be a class of labeled connected graphs, and let C-n be a graph drawn uniformly at random from graphs in C that contain exactly n vertices. Denote by b(l; C-n) the number of blocks (i.e., maximal biconnected subgraphs) of C-n that contain exactly l vertices, and let lb(C-n) be the number of vertices in a largest block of C-n. We show that under certain general assumptions on C, C-n belongs with high probability to one of the following categories: (1) lb(C-n) similar to cn, for some explicitly given c = c( C), and the second largest block is of order n(alpha), where 1 > alpha = alpha(C), or (2) lb(C-n) = O(log n), that is, all blocks contain at most logarithmically many vertices. Moreover, in both cases we show that the quantity b(l; C-n) is concentrated for all l, and we determine its expected value. As a corollary we obtain that the class of planar graphs belongs to category (1). In contrast to that, outerplanar and series-parallel graphs belong to category (2).
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Maximal Biconnected Subgraphs of Random Planar Graphs
    Panagiotou, Konstantinos
    Steger, Angelika
    PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 432 - 440
  • [2] SPANNING MAXIMAL PLANAR SUBGRAPHS OF RANDOM GRAPHS
    BOLLOBAS, B
    FRIEZE, AM
    RANDOM STRUCTURES & ALGORITHMS, 1991, 2 (02) : 225 - 231
  • [3] Maximal Planar Subgraphs of Fixed Girth in Random Graphs
    Fernandez, Manuel
    Sieger, Nicholas
    Tait, Michael
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [4] Drawing Planar Graphs Symmetrically, II: Biconnected Planar Graphs
    Seok-Hee Hong
    Peter Eades
    Algorithmica , 2005, 42 : 159 - 197
  • [5] Drawing planar graphs symmetrically, II: Biconnected planar graphs
    Hong, SH
    Eades, P
    ALGORITHMICA, 2005, 42 (02) : 159 - 197
  • [6] Sampling unlabeled biconnected planar graphs
    Bodirsky, M
    Gröpl, C
    Kang, MY
    ALGORITHMS AND COMPUTATION, 2005, 3827 : 593 - 603
  • [7] SUBGRAPHS OF RANDOM GRAPHS
    FREMLIN, DH
    TALAGRAND, M
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 291 (02) : 551 - 582
  • [8] Long cycles and spanning subgraphs of locally maximal 1-planar graphs
    Fabrici, I
    Harant, J.
    Madaras, T.
    Mohr, S.
    Sotak, R.
    Zamfirescu, C. T.
    JOURNAL OF GRAPH THEORY, 2020, 95 (01) : 125 - 137
  • [9] MAINTAINING BICONNECTED COMPONENTS OF DYNAMIC PLANAR GRAPHS
    GALIL, Z
    ITALIANO, GF
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 510 : 339 - 350
  • [10] Maximal proper subgraphs of median graphs
    Bresar, Bostjan
    Klavzar, Sandi
    DISCRETE MATHEMATICS, 2007, 307 (11-12) : 1389 - 1394