132-avoiding two-stack sortable permutations, Fibonacci numbers, and Pell numbers

被引:9
|
作者
Egge, ES [1 ]
Mansour, T
机构
[1] Gettysburg Coll, Dept Math, Gettysburg, PA 17325 USA
[2] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
关键词
two-stack sortable permutation; restricted permutation; pattern-avoiding permutation; forbidden subsequence; Fibonacci number; Pell number;
D O I
10.1016/j.dam.2003.12.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe the recursive structures of the set of two-stack sortable permutations which avoid 132 and the set of two-stack sortable permutations which contain 132 exactly once. Using these results and standard generating function techniques, we enumerate two-stack sortable permutations which avoid (or contain exactly once) 132 and which avoid (or contain exactly once) an arbitrary permutation tau. In most cases the number of such permutations is given by a simple formula involving Fibonacci or Pell numbers. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:72 / 83
页数:12
相关论文
共 50 条
  • [1] Restricted 132-avoiding permutations
    Mansour, T
    Vainshtein, A
    ADVANCES IN APPLIED MATHEMATICS, 2001, 26 (03) : 258 - 269
  • [2] On the diagram of 132-avoiding permutations
    Reifegerste, A
    EUROPEAN JOURNAL OF COMBINATORICS, 2003, 24 (06) : 759 - 776
  • [3] Equipopularity classes of 132-avoiding permutations
    Chua, Lynn
    Sankar, Krishanu Roy
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (01):
  • [4] FIBONACCI NUMBERS WHICH ARE PRODUCTS OF TWO PELL NUMBERS
    Ddamulira, Mahadi
    Luca, Florian
    Rakotomalala, Mihaja
    FIBONACCI QUARTERLY, 2016, 54 (01): : 11 - 18
  • [5] Pattern Popularity in 132-avoiding Permutations
    Rudolph, Kate
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (01):
  • [6] The operators Fi on permutations, 132-avoiding permutations and inversions
    Liu, Shao-Hua
    DISCRETE MATHEMATICS, 2019, 342 (08) : 2402 - 2414
  • [7] Pell numbers close to Fibonacci numbers
    Pomeo, Fabian
    Bravo, Jhon J.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [8] Fibonacci numbers which are products of three Pell numbers and Pell numbers which are products of three Fibonacci numbers
    Salah Eddine Rihane
    Youssouf Akrour
    Abdelaziz El Habibi
    Boletín de la Sociedad Matemática Mexicana, 2020, 26 : 895 - 910
  • [9] Fibonacci numbers which are products of three Pell numbers and Pell numbers which are products of three Fibonacci numbers
    Rihane, Salah Eddine
    Akrour, Youssouf
    El Habibi, Abdelaziz
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (03): : 895 - 910
  • [10] ON ORESME NUMBERS AND THEIR CONNECTION WITH FIBONACCI AND PELL NUMBERS
    Goy, Taras
    Zatorsky, Roman
    FIBONACCI QUARTERLY, 2019, 57 (03): : 238 - 245