High-Efficiency Poly(Vinylidene Fluoride-Co-Hexafluoropropylene) Loaded 3D Marigold Flower-Like Bismuth Tungstate Triboelectric Films for Mechanical Energy Harvesting and Sensing Applications

被引:25
|
作者
Manchi, Punnarao [1 ]
Graham, Sontyana Adonijah [1 ]
Patnam, Harishkumarreddy [1 ]
Paranjape, Mandar Vasant [1 ]
Yu, Jae Su [1 ]
机构
[1] Kyung Hee Univ, Inst Wearable Convergence Elect, Dept Elect & Informat Convergence Engn, 1732 Deogyeong Daero, Yongin 17104, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
bismuth tungstate; ferroelectric and dielectric; mechanical energy harvesting; self-powered sensors; triboelectric nanogenerators; HYDROTHERMAL SYNTHESIS; PERFORMANCE ENHANCEMENT; HYBRID NANOGENERATOR; NANOCOMPOSITES; STORAGE;
D O I
10.1002/smll.202200822
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Triboelectric nanogenerators (TENGs) are one of the most trending energy harvesting devices because of their efficient and simple mechanism in harvesting mechanical energy from the environment into electricity. Herein, ferroelectric and dielectric bismuth tungstate (Bi2WO6 (BWO)) with a marigold flower-like structure is prepared via a hydrothermal method, which is embedded in poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), forming a PVDF-HFP/BWO composite polymer film (CPF) to fabricate TENGs. Generally, the ferroelectric materials exhibit a large piezoelectric coefficient, high electrostatic dipole moment, and high dielectric constant. The prepared PVDF-HFP/BWO CPF reveals a high polar crystalline beta-phase which leads to enhanced piezoelectric and ferroelectric properties of the CPF, thus resulting in the increased electrical performance of the fabricated TENG. The electrical output performance of the proposed TENG is systematically investigated by varying the amount of BWO material embedded in the PVDF-HFP polymer. The fabricated PVDF-HFP/2.5 wt% BWO CPF-based TENG device exhibits the highest electrical output performance. Additionally, the robust test of the TENG device is conducted to investigate the electrical performance for long-term durability and mechanical stability. Finally, the proposed TENG is operated as a self-powered sensor, harvesting mechanical energy from daily life human activities, and powering various low-power portable electronics.
引用
收藏
页数:10
相关论文
empty
未找到相关数据