On-chip integrated laser-driven particle accelerator

被引:154
|
作者
Sapra, Neil V. [1 ]
Yang, Ki Youl [1 ]
Vercruysse, Dries [1 ]
Leedle, Kenneth J. [1 ]
Black, Dylan S. [1 ]
England, R. Joel [2 ]
Su, Logan [1 ]
Trivedi, Rahul [1 ]
Miao, Yu [1 ]
Solgaard, Olav [1 ]
Byer, Robert L. [1 ]
Vuckovic, Jelena [1 ]
机构
[1] Stanford Univ, EL Ginzton Lab, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, Menlo Pk, CA USA
基金
美国国家科学基金会;
关键词
DIELECTRIC LASER; INVERSE DESIGN; ELECTRONS; COMPACT; DAMAGE;
D O I
10.1126/science.aay5734
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Particle accelerators represent an indispensable tool in science and industry. However, the size and cost of conventional radio-frequency accelerators limit the utility and reach of this technology. Dielectric laser accelerators (DLAs) provide a compact and cost-effective solution to this problem by driving accelerator nanostructures with visible or near-infrared pulsed lasers, resulting in a 104 reduction of scale. Current implementations of DLAs rely on free-space lasers directly incident on the accelerating structures, limiting the scalability and integrability of this technology. We present an experimental demonstration of a waveguide-integrated DLA that was designed using a photonic inverse-design approach. By comparing the measured electron energy spectra with particle-tracking simulations, we infer a maximum energy gain of 0.915 kilo-electron volts over 30 micrometers, corresponding to an acceleration gradient of 30.5 mega-electron volts per meter. On-chip acceleration provides the possibility for a completely integrated mega-electron volt-scale DLA.
引用
收藏
页码:79 / +
页数:22
相关论文
共 50 条
  • [1] Topology optimization of on-chip integrated laser-driven particle accelerator
    Yang-Fan He
    Bin Sun
    Ming-Jiang Ma
    Wei Li
    Qiang-You He
    Zhi-Hao Cui
    Shao-Yi Wang
    Zong-Qing Zhao
    Nuclear Science and Techniques, 2022, 33 (09) : 128 - 138
  • [2] Topology optimization of on-chip integrated laser-driven particle accelerator
    He, Yang-Fan
    Sun, Bin
    Ma, Ming-Jiang
    Li, Wei
    He, Qiang-You
    Cui, Zhi-Hao
    Wang, Shao-Yi
    Zhao, Zong-Qing
    NUCLEAR SCIENCE AND TECHNIQUES, 2022, 33 (09)
  • [3] Topology optimization of on-chip integrated laser-driven particle accelerator
    Yang-Fan He
    Bin Sun
    Ming-Jiang Ma
    Wei Li
    Qiang-You He
    Zhi-Hao Cui
    Shao-Yi Wang
    Zong-Qing Zhao
    Nuclear Science and Techniques, 2022, 33
  • [5] The integrated laser-driven ion accelerator system and the laser-driven ion beam radiotherapy challenge
    Bolton, Paul R.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 809 : 149 - 155
  • [6] Microscale Laser-Driven Particle Accelerator Using the Inverse Cherenkov Effect
    Liu, Weihao
    Yu, Zijia
    Sun, Li
    Liu, Yucheng
    Jia, Qika
    Xu, Hongliang
    Sun, Baogen
    PHYSICAL REVIEW APPLIED, 2020, 14 (01):
  • [7] 700 μJ THz pulses from a laser-driven particle accelerator
    Gopal, Amrutha
    May, Torsten
    Singh, Pushkar
    Herzer, Sven
    Ziegler, Wolfgang
    Paulus, Gerhard G.
    Schmidt, Albrecht
    Reinhard, Andreas
    Dillner, Ulrich
    Meyer, Hans-Georg
    Karmakar, Anupam
    Broemmel, Dirk
    Gibbon, Paul
    LASER ACCELERATION OF ELECTRONS, PROTONS, AND IONS II; AND MEDICAL APPLICATIONS OF LASER-GENERATED BEAMS OF PARTICLES II; AND HARNESSING RELATIVISTIC PLASMA WAVES III, 2013, 8779
  • [8] Novel Quantum Beams from Integrated Laser-Driven Accelerator Systems
    Bolton, Paul R.
    QUANTUM BEAM SCIENCE, 2018, 2 (02)
  • [9] Laser-driven cyclotron autoresonance accelerator
    Hirshfield, JL
    Wang, CB
    ADVANCED ACCELERATOR CONCEPTS, 2001, 569 : 326 - 334
  • [10] Microfabrication of laser-driven accelerator structures
    Cowan, B
    ADVANCED ACCELERATOR CONCEPTS, 2002, 647 : 324 - 330