One of two genes encoding glycyl-tRNA synthetase in Saccharomyces cerevisiae provides mitochondrial and cytoplasmic functions

被引:0
|
作者
Turner, RJ
Lovato, M
Schimmel, P
机构
[1] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
[3] Scripps Res Inst, Dept Chem, La Jolla, CA 92037 USA
关键词
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the yeast Saccharomyces cerevisiae, two genes (GRS1 and GRS2) encode glycyl-tRNA synthetase (GlyRS1 and GlyRS2, respectively). 59% of the sequence of GlyRS2 is identical to that of GlyRS1. Others have proposed that GRS1 and GRS2 encode the cytoplasmic and mitochondrial enzymes, respectively. In this work, we show that GRS1 encodes both functions, whereas GRS2 is dispensable. In addition, both cytoplasmic and mitochondrial phenotypes of the knockout allele of GRS1 in S. cerevisiae are complemented by the expression of the only known gene for glycyl-tRNA synthetase in Schizosaccharomyces pombe, Thus, a single gene for glycyl-tRNA synthetase likely encodes both cytoplasmic and mitochondrial activities in most or all yeast. Phylogenetic analysis shows that GlyRS2 is a predecessor of all yeast GlyRS homologues, Thus, GRS1 appears to be the result of a duplication of GRS2, which itself is pseudogene-like.
引用
收藏
页码:27681 / 27688
页数:8
相关论文
共 50 条
  • [1] One of two genes encoding glycyl-tRNA synthetase in Saccharomyces cerevisiae provides mitochondrial and cytoplasmic functions
    Turner, Robert J.
    Lovato, Martha
    Schimmel, Paul
    2000, American Society for Biochemistry and Molecular Biology Inc. (275)
  • [2] Saccharomyces cerevisiae Possesses a Stress-Inducible Glycyl-tRNA Synthetase Gene
    Chen, Shun-Jia
    Wu, Yi-Hua
    Huang, Hsiao-Yun
    Wang, Chien-Chia
    PLOS ONE, 2012, 7 (03):
  • [3] Vanderwaltozyma polyspora possesses two glycyl-tRNA synthetase genes: One constitutive and one inducible
    Chien, Chin-I
    Chen, Yueh-Lin
    Chen, Shun-Jia
    Chou, Chi-Mao
    Chen, Chin-Yu
    Wang, Chien-Chia
    FUNGAL GENETICS AND BIOLOGY, 2015, 76 : 47 - 56
  • [4] Mutations in glycyl-tRNA synthetase impair mitochondrial metabolism in neurons
    Boczonadi, Veronika
    Meyer, Kathrin
    Gonczarowska-Jorge, Humberto
    Griffin, Helen
    Roos, Andreas
    Bartsakoulia, Marina
    Bansagi, Boglarka
    Ricci, Giulia
    Palinkas, Fanni
    Zahedi, Rene P.
    Bruni, Francesco
    Kaspar, Brian
    Lochmueller, Hanns
    Boycott, Kym M.
    Mueller, Juliane S.
    Horvath, Rita
    HUMAN MOLECULAR GENETICS, 2018, 27 (12) : 2187 - 2204
  • [5] MUTATION IN GLYCYL-TRNA SYNTHETASE IMPAIR MITOCHONDRIAL METABOLISM IN NEURONS
    Boczonadi, V
    Meyer, K.
    Gonczarowska-Jorge, H.
    Bartsakoulia, M.
    Roos, A.
    Bansagi, B.
    Zahedi, R. P.
    Talim, B.
    Bruni, F.
    Kaspar, B.
    Lochmuller, H.
    Boycott, K. M.
    Muller, J. S.
    Horvath, R.
    JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, 2017, 22 (03) : 245 - 245
  • [6] A mutation in GRS1, a glycyl-tRNA synthetase, affects 3′-end formation in Saccharomyces cerevisiae
    Magrath, C
    Hyman, LE
    GENETICS, 1999, 152 (01) : 129 - 141
  • [7] Structural basis of a two-step tRNA recognition mechanism for plastid glycyl-tRNA synthetase
    Yu, Zhaoli
    Wu, Zihan
    Li, Ye
    Hao, Qiang
    Cao, Xiaofeng
    Blaha, Gregor M.
    Lin, Jinzhong
    Lu, Guoliang
    NUCLEIC ACIDS RESEARCH, 2023, 51 (08) : 4000 - 4011
  • [8] Compound heterozygous mutations in glycyl-tRNA synthetase are a proposed cause of systemic mitochondrial disease
    McMillan, Hugh J.
    Schwartzentruber, Jeremy
    Smith, Amanda
    Lee, Suzie
    Chakraborty, Pranesh
    Bulman, Dennis E.
    Beaulieu, Chandree L.
    Majewski, Jacek
    Boycott, Kym M.
    Geraghty, Michael T.
    BMC MEDICAL GENETICS, 2014, 15
  • [9] Impaired mitochondrial function in neuronal cells harbouring a dominant glycyl-tRNA synthetase mutation
    Boczonadi, V.
    Meyer, K.
    Kaspar, B.
    Bartsakoulia, M.
    Mueller, J. S.
    Horvath, R.
    NEUROMUSCULAR DISORDERS, 2016, 26 : S23 - S24
  • [10] Compound heterozygous mutations in glycyl-tRNA synthetase (GARS) cause mitochondrial respiratory chain dysfunction
    Nafisinia, Michael
    Riley, Lisa G.
    Gold, Wendy A.
    Bhattacharya, Kaustuv
    Broderick, Carolyn R.
    Thorburn, David R.
    Simons, Cas
    Christodoulou, John
    PLOS ONE, 2017, 12 (06):