Are genetic polymorphisms in OGG1, XRCC1 and XRCC3 genes predictive for the DNA strand break repair phenotype and genotoxicity in workers exposed to low dose ionising radiations?

被引:97
|
作者
Aka, P
Mateuca, R
Buchet, JP
Thierens, H
Kirsch-Volders, M
机构
[1] Free Univ Brussels, Lab Cell Genet, Dept Biol, B-1050 Brussels, Belgium
[2] Catholic Univ Louvain, Unit Ind Toxicol & Occupat Med, B-1200 Brussels, Belgium
[3] State Univ Ghent, Dept Biomed Phys & Radiat Protect, B-9000 Ghent, Belgium
关键词
genetic polymorphisms; DNA repair genes; repair phenotype;
D O I
10.1016/j.mrfmmm.2004.08.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Identification of higher risk individuals carrying genetic polymorphisms responsible for reduced DNA repair capacity has substantial preventive implications as these individuals could be targeted for cancer prevention. We have conducted a study to assess the predictivity of the OGG1, XRCC1 and XRCC3 genotypes and the in vitro single strand break repair phenotype for the induction of genotoxic effects. At the population level, a significant contribution of the OGG1 genotypes to the in vitro DNA strand break repair capacity was found. At an individual level, the OGG1 variants Ser/Cys and Cys/Cys genotypes showed a slower in vitro DNA repair than the Ser/Ser OGG1 genotype. A multivariate analysis performed with genotypes, age, cumulative dose, exposure status and smoking as independent variables indicated that in the control population, repair capacity is influenced by age and OGG1 polymorphisms. In the exposed population, DNA damage is greater in older men and in smokers. Repair capacity is slower in individuals with Ser/Cys or Cys/Cys OGG1 genotypes compared to those with the Ser/Ser OGG1 genotype. Micronuclei (MN) frequencies increased with age and the cumulative dose of gamma-rays. Analysis of the total population revealed that genetic polymorphisms in XRCC1 resulted in higher residual DNA (RDNA) values and the Met/Met variant of XRCC3 resulted in an increased frequency of micronuclei. The analysis confirms that MN frequencies are reliable biomarkers for the assessment of genetic effects in workers exposed to ionising radiation (IR). A combined analysis of the three genotypes, OGG1, XRCC1 and XRCC3 polymorphisms is advised in order to assess individual susceptibility to ionising radiation. As an alternative or complement, the in vitro DNA strand break repair phenotype which integrates several repair pathways is recommended. Smokers with OGG1 polymorphisms who are exposed to ionising radiation represent a specific population requiring closer medical surveillance because of their increased mutagenic/carcinogenic risk. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:169 / 181
页数:13
相关论文
共 50 条
  • [1] Genetic polymorphisms in XRCC1, OGG1, and XRCC3 DNA repair genes and DNA damage in radiotherapy workers
    Asmaa H. M. Soliman
    Nasef N. Zaki
    Hala M. Fathy
    Aml A. Mohamed
    Mohamed A. Ezzat
    Amal Rayan
    [J]. Environmental Science and Pollution Research, 2020, 27 : 43786 - 43799
  • [2] Genetic polymorphisms in XRCC1, OGG1, and XRCC3 DNA repair genes and DNA damage in radiotherapy workers
    Soliman, Asmaa H. M.
    Zaki, Nasef N.
    Fathy, Hala M.
    Mohamed, Aml A.
    Ezzat, Mohamed A.
    Rayan, Amal
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (35) : 43786 - 43799
  • [3] Chromosomal damage and polymorphisms of DNA repair genes XRCC1 and XRCC3 in workers exposed to chromium
    Halasova, Erika
    Matakova, Tatiana
    Musak, Ludovit
    Polakova, Veronika
    Vodicka, Pavel
    [J]. NEUROENDOCRINOLOGY LETTERS, 2008, 29 (05) : 658 - 662
  • [4] Chromosomal damage and polymorphisms of DNA repair genes XRCC1 and XRCC3 in workers exposed to cytostatics
    Musak, L'udovit
    Vodicka, Pavel
    Klimentova, Gabriela
    Soucek, Pavel
    Hanova, Monika
    Mikulkova, Renata
    Buchancova, Janka
    Vodickova, Ludmila
    Polakova, Veronika
    Pec, Martin
    [J]. NEUROENDOCRINOLOGY LETTERS, 2006, 27 : 57 - 60
  • [5] DNA Repair Genes XRCC1, XRCC3, XPD, and OGG1 Polymorphisms among the Central Region Population of Saudi Arabia
    Alanazi, Mohammad
    Pathan, Akbar Ali Khan
    Ajaj, Sana Abdulla
    Khan, Wajahatullah
    Shaik, Jilani P.
    Al Tassan, Nada
    Perine, Narasimha Reddy
    [J]. BIOLOGICAL RESEARCH, 2013, 46 (02) : 161 - 167
  • [6] DNA Repair Gene Polymorphisms at XRCC1, XRCC3, XPD, and OGG1 Loci in the Hyderabad Population of India
    Parine, Narasimha Reddy
    Pathan, Akbar Ali Khan
    Bobbarala, Varaprasad
    Abduljaleel, Zainularifeen
    Khan, Wajahatullah
    Alanazi, Mohammed
    [J]. ASIAN PACIFIC JOURNAL OF CANCER PREVENTION, 2012, 13 (12) : 6469 - 6474
  • [7] DNA repair gene polymorphisms at XRCC1, XRCC3, XPD, and OGG1 loci in Maharashtrian population of central India
    Pramanik, Sreemanta
    Devi, Saravana
    Chowdhary, Sanghamitra
    Surendran, Subin T.
    Krishnamurthi, Kannan
    Chakrabarti, Tapan
    [J]. CHEMOSPHERE, 2011, 82 (07) : 941 - 946
  • [8] Genetic polymorphisms in XRCC1, OGG1, APE1 and XRCC3 DNA repair genes, ionizing radiation exposure and chromosomal DNA damage in interventional cardiologists
    Andreassi, Maria Grazia
    Foffa, Ilenia
    Manfredi, Samantha
    Botto, Nicoletta
    Cioppa, Angelo
    Picano, Eugenio
    [J]. MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2009, 666 (1-2) : 57 - 63
  • [9] Polymorphisms of the DNA repair genes XRCC1 and XRCC3 in a Brazilian population
    Duarte, MC
    Colombo, J
    Rossit, ARB
    Silva, AE
    [J]. GENETICS AND MOLECULAR BIOLOGY, 2005, 28 (03) : 397 - 401
  • [10] Association studies of OGG1, XRCC1, XRCC2 and XRCC3 polymorphisms with differentiated thyroid cancer
    Garcia-Quispes, Wilser-Andres
    Perez-Machado, Giselle
    Akdi, Abdelmounaim
    Pastor, Susana
    Galofre, Pere
    Biarnes, Fina
    Castell, Joan
    Velazquez, Antonia
    Marcos, Ricard
    [J]. MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2011, 709-10 : 67 - 72