Stability in distribution of randomly perturbed quadratic maps as Markov processes

被引:4
|
作者
Bhattacharya, R
Majumdar, M
机构
[1] Indiana Univ, Bloomington, IN 47405 USA
[2] Cornell Univ, Dept Econ, Ithaca, NY 14853 USA
来源
ANNALS OF APPLIED PROBABILITY | 2004年 / 14卷 / 04期
关键词
quadratic maps; Markov process; invariant probability;
D O I
10.1214/105051604000000918
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Iteration of randomly chosen quadratic maps defines a Markov process: Xn+1 = epsilon(n+1) X-n(1 - X-n), where epsilon(n) are i.i.d. with values in the parameter space [0, 4] of quadratic maps F-theta(x) = thetax(1 - x). Its study is of significance as an important Markov model, with applications to problems of optimization under uncertainty arising in economics. In this article a broad criterion is established for positive Harris recurrence of X-n.
引用
收藏
页码:1802 / 1809
页数:8
相关论文
共 50 条
  • [1] STABILITY OF EQUILIBRIA OF RANDOMLY PERTURBED MAPS
    Hitczenko, Pawel
    Medvedev, Georgi S.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (02): : 369 - 381
  • [2] Distortion inequality for a Markov operator generated by a randomly perturbed family of Markov Maps in Rd
    Bugiel, Peter
    Wedrychowicz, Stanislaw
    Rzepka, Beata
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 225 - 242
  • [3] ON THE SPECTRA OF RANDOMLY PERTURBED EXPANDING MAPS
    BALADI, V
    YOUNG, LS
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 156 (02) : 355 - 385
  • [4] Discretizing randomly perturbed circle maps
    Heicklen, D
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2001, 16 (02): : 107 - 124
  • [5] Discretizing randomly perturbed circle maps
    Heicklen, Deborah
    [J]. Dynamical Systems, 2001, 16 (02) : 107 - 124
  • [6] Perturbed Markov processes
    Craven, BD
    [J]. STOCHASTIC MODELS, 2003, 19 (02) : 269 - 285
  • [7] Stability of randomly perturbed composite systems
    Feng, Z.S.
    Liu, Y.Q.
    [J]. Advances in Modelling & Simulation, 1992, 29 (01): : 55 - 64
  • [8] Error distribution in randomly perturbed orbits
    Marie, Ph.
    Turchetti, G.
    Vaienti, S.
    Zanlungo, F.
    [J]. CHAOS, 2009, 19 (04)
  • [10] Escape rates formulae and metastablilty for randomly perturbed maps
    Bahsoun, Wael
    Vaienti, Sandro
    [J]. NONLINEARITY, 2013, 26 (05) : 1415 - 1438