Computing three dimensional project invariants from a pair of images using the Grassmann-Cayley algebra

被引:6
|
作者
Csurka, G
Faugeras, O
机构
[1] INRIA Rhone Alpes, F-38330 Montbonnot St Martin, France
[2] INRIA Sophia Antipolis, F-06902 Sophia Antipolis, France
关键词
projective invariants; Grassmann-Cayley algebra; protective reconstruction; uncalibrated stereovision;
D O I
10.1016/S0262-8856(97)00045-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Grassmann-Cayley algebra, also called the double algebra, is an invariant algebraic formalism for expressing statements in synthetic projective geometry. It allows the translation of any incidence relation or incidence theorem in projective geometry into a conjunction of simple double algebraic statements involving only join and meet. In 1993, Carlsson made a first attempt to use this algebra to compute three-dimensional invariants of sets of points and lines from a pair of weakly calibrated stero images that is completed here, such that the results permit the calculation of projective invariants for any configurations of points and/or lines. In the second part of the paper it is shown how these invariants can be used to effect implicit projective reconstruction of points and lines. Some experimental results with real data are presented. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:3 / 12
页数:10
相关论文
共 50 条
  • [1] Kinestatic analysis of robot manipulators using the Grassmann-Cayley algebra
    Staffetti, E
    IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2004, 20 (02): : 200 - 210
  • [2] AUTOMATIC TESSELLATION OF QUADRIC SURFACES USING GRASSMANN-CAYLEY ALGEBRA
    Jourdan, Frederic
    Hegron, Gerard
    Mace, Pierre
    COMPUTER VISION AND GRAPHICS (ICCVG 2004), 2006, 32 : 674 - 682
  • [3] Mobility analysis of overconstrained parallel mechanism using Grassmann-Cayley algebra
    Chai, Xinxue
    Li, Qinchuan
    Ye, Wei
    APPLIED MATHEMATICAL MODELLING, 2017, 51 : 643 - 654
  • [4] Singularity Analysis of Lower Mobility Parallel Manipulators Using Grassmann-Cayley Algebra
    Kanaan, Daniel
    Wenger, Philippe
    Caro, Stephane
    Chablat, Damien
    IEEE TRANSACTIONS ON ROBOTICS, 2009, 25 (05) : 995 - 1004
  • [5] Kinestatic analysis of serial and parallel robot manipulators using Grassmann-Cayley algebra
    Staffetti, E
    Thomas, F
    ADVANCES IN ROBOT KINEMATICS, 2000, : 17 - 26
  • [6] Singularity analysis of the H4 robot using Grassmann-Cayley algebra
    Amine, Semaan
    Caro, Stephane
    Wenger, Philippe
    Kanaan, Daniel
    ROBOTICA, 2012, 30 : 1109 - 1118
  • [7] SINGULARITY ANALYSIS OF THE 4 RUU PARALLEL MANIPULATOR USING GRASSMANN-CAYLEY ALGEBRA
    Amine, Semaan
    Masouleh, Mehdi Tale
    Caro, Stephane
    Wenger, Philippe
    Gosselin, Clement
    TRANSACTIONS OF THE CANADIAN SOCIETY FOR MECHANICAL ENGINEERING, 2011, 35 (04) : 515 - 528
  • [8] Singularity Analysis of Limited-DOF Parallel Manipulators Using Grassmann-Cayley Algebra
    Kanaan, Daniel
    Wenger, Philippe
    Chablat, Damien
    ADVANCES IN ROBOT KINEMATICS: ANALYSIS AND DESIGN, 2008, : 59 - 68
  • [9] Analysis of Rigid Body Interactions for Compliant Motion Tasks Using the Grassmann-Cayley Algebra
    Staffetti, Ernesto
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2009, 6 (01) : 80 - 93
  • [10] Analysis of rigid body interactions for compliant motion tasks using the Grassmann-Cayley algebra
    Staffetti, E
    Thomas, F
    2000 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2000), VOLS 1-3, PROCEEDINGS, 2000, : 2325 - 2332