New approach on differential equation via trapezoidal neutrosophic number

被引:18
|
作者
Sumathi, I. R. [1 ]
Sweety, C. Antony Crispin [2 ]
机构
[1] Amrita Vishwa Vidyapeetham, Amrita Sch Engn, Coimbatore, Tamil Nadu, India
[2] Nirmala Coll Women, Coimbatore, Tamil Nadu, India
关键词
Neutrosophic set; Trapezoidal neutrosophic number; Neutrosophic differential equation; DEVELOPING SUPPLIER SELECTION; INTUITIONISTIC FUZZY NUMBERS; VALUED FUNCTIONS; DECISION-MAKING; OPERATORS;
D O I
10.1007/s40747-019-00117-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neutrosophic Logic is a tool based on non-standard analysis to represent mathematical model of uncertainty, vagueness, ambiguity, incompleteness, and inconsistency. In Neutrosophic set, indeterminacy is quantified explicitly whereas the truth membership, indeterminacy membership, and falsity membership are independent. This plays a vital role in many situations when we handle inconsistent and incomplete information. In modeling problems, differential equations have major applications in the field of science and engineering and the study of differential equation with uncertainty is one of emerging field of research. In this paper, the differential equations in neutrosophic environment are explored, also the solution of second-order linear differential equation with trapezoidal neutrosophic numbers as boundary conditions is discussed. Furthermore, the numerical example is given to demonstrate the solution with different values of (alpha,beta,gamma)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha , \beta , \gamma )$$\end{document}-cut of trapezoidal neutrosophic number.
引用
收藏
页码:417 / 424
页数:8
相关论文
共 50 条
  • [1] New approach on differential equation via trapezoidal neutrosophic number
    I. R. Sumathi
    C. Antony Crispin Sweety
    Complex & Intelligent Systems, 2019, 5 : 417 - 424
  • [2] A Model for Container Inventory with a Trapezoidal Bipolar Neutrosophic Number
    Garg, Harish
    Rajeswari, S.
    Sugapriya, C.
    Nagarajan, D.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (11) : 15027 - 15047
  • [3] A Model for Container Inventory with a Trapezoidal Bipolar Neutrosophic Number
    Harish Garg
    S. Rajeswari
    C. Sugapriya
    D. Nagarajan
    Arabian Journal for Science and Engineering, 2022, 47 : 15027 - 15047
  • [4] TOPSIS Method for MADM based on Interval Trapezoidal Neutrosophic Number
    Giri, Bibhas C.
    Molla, Mahatab Uddin
    Biswas, Pranab
    NEUTROSOPHIC SETS AND SYSTEMS, 2018, 22 : 151 - 167
  • [5] A Novel Method for Neutrosophic Assignment Problem by using Interval-Valued Trapezoidal Neutrosophic Number
    Khalifa H.A.E.-W.
    Kumar A.P.
    Neutrosophic Sets and Systems, 2020, 36 : 24 - 36
  • [6] Redistribution for cost minimization in disaster management under uncertainty with trapezoidal neutrosophic number
    Sarma, Deepshikha
    Das, Amrit
    Bera, Uttam Kumar
    Hezam, Ibrahim M.
    COMPUTERS IN INDUSTRY, 2019, 109 : 226 - 238
  • [7] A NEW APPROACH FOR RANKING NON-NORMAL TRAPEZOIDAL FUZZY NUMBER
    Wang, Guixiang
    Du, Jie
    Wang, Baoping
    Zhang, Jiaxi
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2013, 9 (08): : 3173 - 3183
  • [8] Trapezoidal neutrosophic assignment problem with new interval arithmetic costs
    Sinika, S.
    Ramesh, G.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (02) : 2179 - 2191
  • [10] A new distance measure for trapezoidal fuzzy neutrosophic numbers based on the centroids
    Said B.
    Lathamaheswari M.
    Tan R.
    Nagarajan D.
    Mohamed T.
    Smarandache F.
    Bakali A.
    Said, Broumi (broumisaid78@gmail.com), 1600, University of New Mexico (35): : 478 - 502