Generalized Ordinary Differential Equation Models

被引:13
|
作者
Miao, Hongyu [1 ]
Wu, Hulin [1 ]
Xue, Hongqi [1 ]
机构
[1] Univ Rochester, Dept Biostat & Computat Biol, Rochester, NY 14642 USA
关键词
Evolutionary hybrid algorithm; Generalized nonlinear model; Influenza viral dynamics; Numerical error theory; CATEGORICAL TIME-SERIES; INFLUENZA-A VIRUS; MAXIMUM-LIKELIHOOD-ESTIMATION; DETERMINISTIC DYNAMIC-MODELS; ADAPTIVE IMMUNE-RESPONSE; PARAMETER-ESTIMATION; REGRESSION-MODELS; VARYING COEFFICIENTS; MEASUREMENT ERROR; HIV-1; DYNAMICS;
D O I
10.1080/01621459.2014.957287
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method. Supplementary materials for this article are available online.
引用
收藏
页码:1672 / 1682
页数:11
相关论文
共 50 条
  • [1] Ordinary Differential Equation Models for Adoptive Immunotherapy
    Anne Talkington
    Claudia Dantoin
    Rick Durrett
    [J]. Bulletin of Mathematical Biology, 2018, 80 : 1059 - 1083
  • [2] Robust Estimation for Ordinary Differential Equation Models
    Cao, J.
    Wang, L.
    Xu, J.
    [J]. BIOMETRICS, 2011, 67 (04) : 1305 - 1313
  • [3] Ordinary Differential Equation Models for Adoptive Immunotherapy
    Talkington, Anne
    Dantoin, Claudia
    Durrett, Rick
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2018, 80 (05) : 1059 - 1083
  • [4] In-out intermittency in partial differential equation and ordinary differential equation models
    Covas, E
    Tavakol, R
    Ashwin, P
    Tworkowski, A
    Brooke, JM
    [J]. CHAOS, 2001, 11 (02) : 404 - 409
  • [5] Generalized Laguerre approximation and its application to ordinary differential equation
    Zhang Xiao-yong
    Wu Huafeng
    [J]. APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (03): : 1117 - 1124
  • [6] Terminal value problem for a generalized fractional ordinary differential equation
    Li, Can
    Li, Min-Min
    Zhou, Han
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (17) : 12963 - 12979
  • [7] Parameter estimation for semiparametric ordinary differential equation models
    Xue, Hongqi
    Kumar, Arun
    Wu, Hulin
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (24) : 5985 - 6004
  • [8] Cause and cure of sloppiness in ordinary differential equation models
    Toensing, Christian
    Timmer, Jens
    Kreutz, Clemens
    [J]. PHYSICAL REVIEW E, 2014, 90 (02):
  • [9] Parameter Range Reduction in Ordinary Differential Equation Models
    Andrew Skelton
    Allan R. Willms
    [J]. Journal of Scientific Computing, 2015, 62 : 517 - 531
  • [10] Parameter Range Reduction in Ordinary Differential Equation Models
    Skelton, Andrew
    Willms, Allan R.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2015, 62 (02) : 517 - 531