Gradient-echo line scan imaging using 2D-Selective RF excitation

被引:7
|
作者
Finsterbusch, J [1 ]
Frahm, J [1 ]
机构
[1] Max Planck Inst Biophys Chem, Biomed NMR Forsch GmbH, D-37070 Gottingen, Germany
关键词
magnetic resonance imaging; line scan imaging; 2D-selective RF excitation; inner-volume imaging; fMRI;
D O I
10.1006/jmre.2000.2159
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A gradient-echo line scan imaging technique was developed which employs two-dimensional spatially selective radiofrequency (2DRF) pulses for consecutively exciting individual columns of transverse magnetization, i.e., image lines. Although a variety of trajectories are possible for 2DRF excitation, the current implementation involved a blipped-planar trajectory in conjunction with additional saturation RF pulses to suppress side excitations above and below the desired image section, i.e., along the blip direction of the 2DRF pulse. Human brain imaging at 2.0 T (Siemens Vision, Erlangen, Germany) resulted in measuring times of 5.2 s for a 5-mm section at 1.0 x 1.0 mm in-plane resolution. Functional neuroimaging of the motor cortex at 1.2 s temporal resolution and 0.78 x 1.56 mm in-plane resolution exploited the capability of imaging inner volumes (here a 25-mm strip) without signal aliasing. (C) 2000 Academic Press.
引用
收藏
页码:17 / 25
页数:9
相关论文
共 50 条
  • [1] Calibration of echo-planar 2D-selective RF excitation pulses
    Oelhafen, M
    Pruessmann, KP
    Kozerke, S
    Boesiger, P
    MAGNETIC RESONANCE IN MEDICINE, 2004, 52 (05) : 1136 - 1145
  • [2] 4D flow imaging with 2D-selective excitation
    Wink, Clarissa
    Ferrazzi, Giulio
    Bassenge, Jean Pierre
    Flassbeck, Sebastian
    Schmidt, Simon
    Schaeffter, Tobias
    Schmitter, Sebastian
    MAGNETIC RESONANCE IN MEDICINE, 2019, 82 (03) : 886 - 900
  • [3] Fast-Spin-Echo Imaging of Inner Fields-of-View With 2D-Selective RF Excitations
    Finsterbusch, Juergen
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2010, 31 (06) : 1530 - 1537
  • [4] Improved gradient-echo 3D magnetic resonance imaging using compressed sensing and Toeplitz encoding with phase-scrambled RF excitation
    Wang, Haifeng
    Liang, Dong
    Su, Shi
    King, Kevin F.
    Chang, Yuchou
    Liu, Xin
    Zheng, Hairong
    Ying, Leslie
    MEDICAL PHYSICS, 2020, 47 (04) : 1579 - 1589
  • [5] Reduction of Flow Artifacts by Using Partial Saturation in RF-Spoiled Gradient-Echo Imaging
    Han, Misung
    Hargreaves, Brian A.
    MAGNETIC RESONANCE IN MEDICINE, 2011, 65 (05) : 1326 - 1334
  • [6] Correction for EPI distortions using multi-echo gradient-echo imaging
    Chen, NK
    Wyrwicz, AM
    MAGNETIC RESONANCE IN MEDICINE, 1999, 41 (06) : 1206 - 1213
  • [7] Factors affecting the effectiveness of a projection dephaser in 2D gradient-echo imaging
    Bakker, Chris J. G.
    Peters, Nicky H. G. M.
    Vincken, Koen L.
    van der Bom, Martijn
    Seppenwoolde, Jan-Henry
    PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (13): : 3847 - 3857
  • [8] Short echo-time 3D radial gradient-echo MRI using concurrent dephasing and excitation
    Park, Jang-Yeon
    Moeller, Steen
    Goerke, Ute
    Auerbach, Edward
    Chamberlain, Ryan
    Ellermann, Jutta
    Garwood, Michael
    MAGNETIC RESONANCE IN MEDICINE, 2012, 67 (02) : 428 - 436
  • [9] Wavelet encoding for 3D gradient-echo MR imaging
    Gelman, N
    Wood, ML
    MAGNETIC RESONANCE IN MEDICINE, 1996, 36 (04) : 613 - 619
  • [10] Vessel architecture imaging using multiband gradient-echo/spin-echo EPI
    Zhang, Ke
    Yun, Seong Dae
    Triphan, Simon M. F.
    Sturm, Volker J.
    Buschle, Lukas R.
    Hahn, Artur
    Heiland, Sabine
    Bendszus, Martin
    Schlemmer, Heinz-Peter
    Shah, N. Jon
    Ziener, Christian H.
    Kurz, Felix T.
    PLOS ONE, 2019, 14 (08):