Codes over finite fields for multidimensional signals

被引:3
|
作者
Dong, XD [1 ]
Soh, CB
Gunawan, E
机构
[1] Liaoning Normal Univ, Dept Math, Dalian 116029, Peoples R China
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
algebraic integer ring; block code; cyclotomic field; multidimensional signal space;
D O I
10.1006/jabr.1999.8100
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, linear block codes over finite fields of the algebraic integer ring of the cyclotomic field Q(e(2 pii/n)) module irreducible elements are presented, where n epsilon {3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 24, 25, 27, 28, 32, 33, 35, 36, 40, 44, 45, 48, 60, 84}. These codes can be used for coding over phi>(*) over bar * (n) dimensional signal space and can correct one error taken from the group of all roots of unity in the algebraic integer ring of Q(e(2 pii/n)). These codes provide an algebraic approach in an area which is currently mainly dominated by nonalgebraic convolutional codes. (C) 2000 Academic Press.
引用
收藏
页码:105 / 121
页数:17
相关论文
共 50 条
  • [1] On codes from cyclotomic fields for multidimensional signals
    Dong, Xue-dong
    Soh, Cheong Boon
    Gunawan, Erry
    [J]. IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2005, 22 (01) : 1 - 11
  • [2] Multidimensional cyclic codes and Artin-Schreier type hypersurfaces over finite fields
    Guneri, Cem
    Ozbudak, Feffuh
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (01) : 44 - 58
  • [3] Toric Codes over Finite Fields
    David Joyner
    [J]. Applicable Algebra in Engineering, Communication and Computing, 2004, 15 : 63 - 79
  • [4] On constacyclic codes over finite fields
    Anuradha Sharma
    Saroj Rani
    [J]. Cryptography and Communications, 2016, 8 : 617 - 636
  • [5] Constacyclic codes over finite fields
    Chen, Bocong
    Fan, Yun
    Lin, Liren
    Liu, Hongwei
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (06) : 1217 - 1231
  • [6] On constacyclic codes over finite fields
    Sharma, Anuradha
    Rani, Saroj
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2016, 8 (04): : 617 - 636
  • [7] Toric codes over finite fields
    Joyner, D
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2004, 15 (01) : 63 - 79
  • [8] Curves over finite fields and codes
    van der Geer, G
    [J]. EUROPEAN CONGRESS OF MATHEMATICS, VOL II, 2001, 202 : 225 - 238
  • [9] LCD codes over finite fields
    Zoubir, N.
    Guenda, Kenza
    Seneviratne, Padmapani
    Aaron Gulliver, T.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024,
  • [10] Multidimensional Signals and Cyclic Codes over Torus Geometry
    Riznyk, Volodymyr
    [J]. 2016 XITH INTERNATIONAL SCIENTIFIC AND TECHNICAL CONFERENCE COMPUTER SCIENCES AND INFORMATION TECHNOLOGIES (CSIT), 2016, : 126 - 128