An improved unibond dual-parameter peridynamic model for fracture analysis of quasi-brittle materials

被引:23
|
作者
Li, Shuang [1 ]
Lu, Haining [1 ]
Jin, Yanli [2 ]
Sun, Pengfei [1 ]
Huang, Xiaohua [2 ]
Bie, Zhiwu [3 ]
机构
[1] Shanghai Jiao Tong Univ, Collaborat Innovat Ctr Adv Ship & Deep Sea Explor, State Key Lab Ocean Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[2] Guangxi Univ, Coll Civil Engn & Architecture, Minist Educ, Key Lab Disaster Prevent & Struct Safety, Nanning 530004, Peoples R China
[3] City Univ Hong Kong, Dept Architecture & Civil Engn, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Bond-based peridynamics; Quasi-brittle materials; Fracture; Crack propagation; STATE-BASED PERIDYNAMICS; BOND-BASED PERIDYNAMICS; CRACK-PROPAGATION; CONSTITUTIVE MODEL; FINITE-ELEMENTS; GROWTH; DISCONTINUITIES; ELASTICITY;
D O I
10.1016/j.ijmecsci.2021.106571
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Peridynamics (PD) is a new nonlocal form of classical continuum mechanics, which is very suitable for investigating material failure. However, the application of classical bond-based PD (BPD) to brittle fracture is restricted because the failure models proposed in BPD mainly describe brittle fracture rather than quasi-brittle fracture. Moreover, the models have a limitation of fixed Poisson's ratio, and the effect of internal length on non local long-range forces cannot be reflected. The present study proposes an improved unibond dual-parameter PD (UDPD) model to overcome the three drawbacks in the damage and fracture analyses of quasi-brittle materials. The conversion formulations of the normal stiffness and tangential stiffness between the elasticity modulus and Poisson's ratio were derived first. Then, a continuous function was introduced in the UDPD model by considering the internal length effect of long-range forces, and the corresponding expressions of the micromodulus functions were deduced. Furthermore, the basic form of the constitutive force function of the UDPD was constructed based on the linear and nonlinear mechanical behaviors of the failure process of quasi-brittle materials, and a corresponding failure criterion was used to evaluate the damage. The validity and accuracy of the proposed model were demonstrated by conducting numerical tests on four specimens, namely, a rectangular plate, double-edge notched concrete specimen, unilaterally notched gray cast iron, and concrete L-specimen panel under quasi-static loading. The model results were compared with those of experiments and numerical studies in the literature. It was found that the proposed model has the same simplicity and stability of the BPD model and can fully capture the nonlinear deformation and progressive failure of quasi-brittle materials with different Poisson's ratios.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] An optimized unibond dual-parameter peridynamic model for deformation and fracture simulation of quasi-brittle materials
    You, Yachen
    Li, Hong
    Jia, Siyi
    MATERIALS TODAY COMMUNICATIONS, 2023, 37
  • [2] Fracture failure of quasi-brittle materials by a novel peridynamic model
    Friedrich, Leandro F.
    Iturrioz, Ignacio
    Vantadori, Sabrina
    COMPOSITE STRUCTURES, 2023, 323
  • [3] A novel peridynamic approach for fracture analysis of quasi-brittle materials
    Friedrich, Leandro F.
    Colpo, Angelica B.
    Kosteski, Luis E.
    Vantadori, Sabrina
    Iturrioz, Ignacio
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 227
  • [4] Crack nucleation in brittle and quasi-brittle materials: A peridynamic analysis
    Niazi, Sina
    Chen, Ziguang
    Bobaru, Florin
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2021, 112
  • [5] A micromorphic peridynamic model and the fracture simulations of quasi-brittle material
    Chen, Zhuang
    Chu, Xihua
    Duan, Qinglin
    ENGINEERING FRACTURE MECHANICS, 2022, 271
  • [6] Fracture analysis of model materials as a substitute of quasi-brittle ceramics
    Jiménez-Piqué, E
    Dortmans, LJMG
    de With, G
    EURO CERAMICS VII, PT 1-3, 2002, 206-2 : 755 - 758
  • [7] Multiscale Fracture Model for Quasi-brittle Materials
    Petrov, Yuri V.
    Bratov, Vladimir
    PERFORMANCE, PROTECTION AND STRENGTHENING OF STRUCTURES UNDER EXTREME LOADING, 2011, 82 : 160 - +
  • [8] Analysis on the influence of Poisson's ratio on brittle fracture by applying uni-bond dual-parameter peridynamic model
    Huang, Xiaohua
    Li, Shuang
    Jin, Yanli
    Yang, Dong
    Su, Guoshao
    He, Xiaoqiao
    ENGINEERING FRACTURE MECHANICS, 2019, 222
  • [9] An improved ordinary state-based peridynamic model for cohesive crack growth in quasi-brittle materials
    Yang, Dong
    He, Xiaoqiao
    Yi, Shenghui
    Liu, Xuefeng
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2019, 153 : 402 - 415
  • [10] Numerical analysis of indentation fracture in quasi-brittle materials
    Carpinteri, A
    Chiaia, B
    Invernizzi, S
    ENGINEERING FRACTURE MECHANICS, 2004, 71 (4-6) : 567 - 577