On the critical Neumann problem with weight in exterior domains

被引:9
|
作者
Chabrowski, J
Ruf, B
机构
[1] Univ Milan, Dipartimento Matemat F Enriques, I-20133 Milan, Italy
[2] Univ Queensland, Dept Math, St Lucia, Qld 4072, Australia
关键词
Neumann problem; exterior domains; critical Sobolev exponent; least energy solutions; optimal Sobolev inequalities;
D O I
10.1016/S0362-546X(03)00059-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the solvability of the Neumann problem (1.1) involving a critical Sobolev exponent in exterior domains. It is assumed that the coefficient Q is a positive and smooth function on Omega(c) and lambda > 0 is a parameter. We examine the common effect of the mean curvature of the boundary partial derivativeOmega and the shape of the graph of the coefficient Q on the existence of least energy solutions. Crown Copyright (C) 2003 Published by Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:143 / 163
页数:21
相关论文
共 50 条