Inequalities for sine sums with more variables

被引:0
|
作者
Alzer, Horst [1 ]
Kwong, Man Kam [2 ]
机构
[1] Morsbacher Str 10, D-51545 Waldbrol, Germany
[2] Hong Kong Polytech Univ, Dept Appl Math, Hunghom, Hong Kong, Peoples R China
来源
RAMANUJAN JOURNAL | 2022年 / 57卷 / 01期
关键词
Sine sums; Inequalities; Vietoris' theorem;
D O I
10.1007/s11139-021-00433-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A result of Vietoris states that if the real numbers a1, ..., an satisfy (*) a(1) >= a(2)/2 >= . . . >= a(n)/n > 0 and a(2k-1) >= a(2k )(1 <= k <= n/2), then, for x(1), . . . x(m )> 0 with x(1)+ . . . + x(m) < pi, (**) Sigma(n)(k=1) a(k) sin(kx(1)) . . . sin(kx(m))/k(m) > 0. We prove that (**) (with ">=" instead of ">") holds under weaker conditions. It suffices to assume, instead of (*), that Sigma(N)(k=1) a(k) sin(kt)/k > 0 (N = 1, ... , n; 0< t < pi), and, moreover, (**) is valid for a larger region, namely, x(1), ..., x(m) (0, pi).
引用
收藏
页码:401 / 416
页数:16
相关论文
共 50 条