First- and second-order expansions in the central limit theorem for a branching random walk

被引:4
|
作者
Gao, Zhiqiang [1 ]
Liu, Quansheng [2 ,3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Beijing 100875, Peoples R China
[2] Univ Bretagne Sud, CNRS, LMBA, UMR 6205, Campus Tohannic, F-56000 Vannes, France
[3] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410004, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
CONVERGENCE-RATES; TIME;
D O I
10.1016/j.crma.2016.01.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give the first- and second-order asymptotic expansions for the central limit theorem about the distribution of particles in a branching random walk on the real line. In particular, our first-order expansion reveals the exact convergence rate in the central limit theorem; it extends and improves a known result for the branching Wiener process. (C) 2016 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:532 / 537
页数:6
相关论文
共 50 条