Comparisons of the Cubed-Sphere Gravity Model with the Spherical Harmonics

被引:28
|
作者
Jones, Brandon A. [1 ]
Born, George H. [1 ]
Beylkin, Gregory [2 ]
机构
[1] Univ Colorado, Dept Aerosp Engn Sci, Colorado Ctr Astrodynam Res, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
基金
美国国家航空航天局;
关键词
REPRESENTATION;
D O I
10.2514/1.45336
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The cubed-sphere gravitational model is a modification of a base model, e.g., the spherical harmonic model, to allow for the fast evaluation of acceleration. The model consists of concentric spheres, each mapped to the surface of a cube and combined with an appropriate interpolation scheme. The paper presents a brief description of the cubed-sphere model and a comparison of it with the spherical harmonic model. The model was configured to achieve a desired accuracy so that dynamical tests, e.g., evaluation of the integration constant, closely approximate that of the spherical harmonic model. The new model closely approximates the spherical harmonic model, with propagated orbits deviating by a fraction of a millimeter at or above feasible Earth-centered altitudes.
引用
下载
收藏
页码:415 / 425
页数:11
相关论文
共 50 条
  • [1] ORBIT DETERMINATION WITH THE CUBED-SPHERE GRAVITY MODEL
    Jones, Brandon A.
    Born, George H.
    Beylkin, Gregory
    SPACEFLIGHT MECHANICS 2010, PTS I-III, 2010, 136 : 2011 - +
  • [2] Sequential Orbit Determination with the Cubed-Sphere Gravity Model
    Jones, Brandon A.
    Born, George H.
    Beylkin, Gregory
    JOURNAL OF SPACECRAFT AND ROCKETS, 2012, 49 (01) : 145 - 156
  • [3] Hermitian approximation of the spherical divergence on the Cubed-Sphere
    Croisille, Jean-Pierre
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 280 : 188 - 201
  • [4] Interpolation on the cubed sphere with spherical harmonics
    Jean-Baptiste Bellet
    Matthieu Brachet
    Jean-Pierre Croisille
    Numerische Mathematik, 2023, 153 : 249 - 278
  • [5] Interpolation on the cubed sphere with spherical harmonics
    Bellet, Jean-Baptiste
    Brachet, Matthieu
    Croisille, Jean-Pierre
    NUMERISCHE MATHEMATIK, 2023, 153 (2-3) : 249 - 278
  • [6] On the corners of the cubed-sphere grid
    Zerroukat, M.
    Allen, T.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2022, 148 (743) : 778 - 783
  • [7] A Schwarz preconditioner for the cubed-sphere
    Thomas, SJ
    Dennis, JM
    Tufo, HM
    Fischer, PF
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (02): : 442 - 453
  • [8] Eigensolutions of the spherical Laplacian for the cubed-sphere and icosahedral-hexagonal grids
    Cheong, Hyeong-Bin
    Kang, Hyun-Gyu
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2015, 141 (693) : 3383 - 3398
  • [9] Least squares spherical harmonics approximation on the Cubed Sphere
    Bellet, Jean-Baptiste
    Croisille, Jean -Pierre
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 429
  • [10] A multi-moment transport model on cubed-sphere grid
    Chen, C. G.
    Xiao, F.
    Li, X. L.
    Yang, Y.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 67 (12) : 1993 - 2014