Transformation, Reduction and Extrapolation Techniques for Feynman Loop Integrals

被引:0
|
作者
de Doncker, Elise [1 ]
Fujimoto, Junpei [2 ]
Hamaguchi, Nobuyuki [4 ]
Ishikawa, Tadashi [2 ]
Kurihara, Yoshimasa [2 ]
Shimizu, Yoshimitsu [3 ]
Yuasa, Fukuko [2 ]
机构
[1] Western Michigan Univ, Dept Comp Sci, Kalamazoo, MI 49008 USA
[2] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 305, Japan
[3] Grad Univ Adv Studies, Kanagawa 2400193, Japan
[4] Hitachi Ltd, Software Div, Totsuka Ku, Yokohama, Kanagawa, Japan
关键词
MULTIDIMENSIONAL INTEGRATION; QUADRATURE; CONVERGENCE; ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We address the computation of Feynman loop integrals, which are required for perturbation calculations in high energy physics, as they contribute corrections to the scattering amplitude for the collision of elementary particles. Results in this field can be used in the verification of theoretical models, compared with data measured at colliders. We made a numerical computation feasible for various types of one and two-loop Feynman integrals, by parametrizing the integral to be computed and extrapolating to the limit as the parameter introduced in the denominator of the integrand tends to zero. In order to handle additional singularities at the boundaries of the integration domain, the extrapolation can be preceded by a transformation and/or by a sector decomposition. With the goal of demonstrating the applicability of the combined integration and extrapolation methods to a wide range of problems, we give a survey of earlier work and present additional applications with new results. We aim for an automatic or semi-automatic approach, in order to greatly reduce the amount of analytic manipulation required before the numeric approximation.
引用
收藏
页码:139 / +
页数:4
相关论文
共 50 条
  • [1] High Performance and Increased Precision Techniques for Feynman Loop Integrals
    Kato, K.
    de Doncker, E.
    Ishikawa, T.
    Kapenga, J.
    Olagbemi, O.
    Yuasa, F.
    17TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2016), 2016, 762
  • [2] Multi-threaded adaptive extrapolation procedure for Feynman loop integrals in the physical region
    de Doncker, E.
    Yuasa, F.
    Assaf, R.
    24TH IUPAP CONFERENCE ON COMPUTATIONAL PHYSICS (IUPAP-CCP 2012), 2013, 454
  • [3] Functional reduction of one-loop Feynman integrals with arbitrary masses
    O. V. Tarasov
    Journal of High Energy Physics, 2022
  • [4] Complete algebraic reduction of one-loop tensor Feynman integrals
    Fleischer, J.
    Riemann, T.
    PHYSICAL REVIEW D, 2011, 83 (07):
  • [5] Functional reduction of one-loop Feynman integrals with arbitrary masses
    Tarasov, O., V
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (06)
  • [7] Numerical integration and extrapolation for finite and UV-divergent 3-loop Feynman integrals
    de Doncker, E.
    Yuasa, F.
    Kato, K.
    Ishikawa, T.
    4TH COMPUTATIONAL PARTICLE PHYSICS WORKSHOP, 2017, 920
  • [8] Quantum algorithm for Feynman loop integrals
    Ramirez-Uribe, Selomit
    Renteria-Olivo, Andres E.
    Rodrigo, German
    Sborlini, German F. R.
    Vale Silva, Luiz
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (05)
  • [9] Quadpack computation of Feynman loop integrals
    de Doncker, Elise
    Fujimoto, Junpei
    Hamaguchi, Nobuyuki
    Ishikawa, Tadashi
    Kurihara, Yoshimasa
    Shimizu, Yoshimitsu
    Yuasa, Fukuko
    JOURNAL OF COMPUTATIONAL SCIENCE, 2012, 3 (03) : 102 - 112
  • [10] Quantum algorithm for Feynman loop integrals
    Selomit Ramírez-Uribe
    Andrés E. Rentería-Olivo
    Germán Rodrigo
    German F. R. Sborlini
    Luiz Vale Silva
    Journal of High Energy Physics, 2022