HADAMARD TYPE INEQUALITIES VIA FRACTIONAL CALCULUS IN THE SPACE OF EXP-CONVEX FUNCTIONS AND APPLICATIONS

被引:0
|
作者
Ma, Li [1 ]
Yang, Guangzhengao [2 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230601, Anhui, Peoples R China
[2] Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei 230601, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Exp-convexity; Hadamard type integral inequalities; fractional calculus; Mittag-Leffler type convexity; INTEGRAL-INEQUALITIES; COORDINATED CONVEX; REFINEMENTS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study basic properties of exp-convex functions and establish the corresponding Hadamard type integral inequalities along with fractional operators. A comparative analysis between the exp-convexity and classic convexity is discussed. Furthermore, several related integral identities and estimation of upper bounds of inequalities involved with fractional operators are proved. In addition, some indispensable propositions associated with special means are allocated to illustrate the usefulness of our main results. Besides, Mittag-Leffler type convex functions with weaker convexity than exp-convexity are also presented.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] New Hermite-Hadamard-Fejer type inequalities for (η1, η2)-convex functions via fractional calculus
    Mehmood, Sikander
    Zafar, Fiza
    Yasmin, Nusrat
    SCIENCEASIA, 2020, 46 (01): : 102 - 108
  • [2] ON HADAMARD TYPE INEQUALITIES FOR m-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS
    Farid, G.
    Rehman, A. Ur
    Tariq, B.
    Waheed, A.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2016, 7 (04): : 150 - 167
  • [3] On the Hadamard's type Inequalities for Convex Functions via Conformable Fractional Integrals
    Yildirim, M. E.
    Akkurt, A.
    Yildirim, H.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2018, 9 (03): : 1 - 10
  • [4] On Hermite-Hadamard-Fejer-Type Inequalities for η-Convex Functions via Quantum Calculus
    Arunrat, Nuttapong
    Nonlaopon, Kamsing
    Budak, Hueseyin
    MATHEMATICS, 2023, 11 (15)
  • [5] Hadamard Type Inequalities for m-convex and (α, m)-convex Functions via Fractional Integrals
    Ardic, Merve Avci
    Ekinci, Alper
    Akdemir, Ahmet Ocak
    Ozdemir, M. Emin
    6TH INTERNATIONAL EURASIAN CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (IECMSA-2017), 2018, 1926
  • [6] ON THE HERMITE-HADAMARD INEQUALITIES FOR CONVEX FUNCTIONS VIA HADAMARD FRACTIONAL INTEGRALS
    Peng, Shan
    Wei, Wei
    Wang, JinRong
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2014, 29 (01): : 55 - 75
  • [7] Hadamard and Fejér–Hadamard type inequalities for harmonically convex functions via generalized fractional integrals
    Abbas G.
    Farid G.
    The Journal of Analysis, 2017, 25 (1) : 107 - 119
  • [8] Hadamard type local fractional integral inequalities for generalized harmonically convex functions and applications
    Sun, Wenbing
    Liu, Qiong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (09) : 5776 - 5787
  • [9] Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals
    Iscan, Imdat
    Wu, Shanhe
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 : 237 - 244
  • [10] Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals
    Iscan, Imdat
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2015, 60 (03): : 355 - 366