A Novel Decentralized Weighted ReliefF-PCA Method for Fault Detection

被引:5
|
作者
Yang, Yinghua [1 ]
Chen, Xiangming [1 ]
Zhang, Yue [1 ]
Liu, Xiaozhi [1 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Liaoning, Peoples R China
关键词
Principal component analysis; Fault detection; Monitoring; Classification algorithms; Covariance matrices; Numerical models; Correlation; ReliefF algorithm; decentralized weighted model; principal component analysis; Bayesian information criterion; DIAGNOSIS; RECONSTRUCTION;
D O I
10.1109/ACCESS.2019.2943024
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The decentralized weighted ReliefF-PCA (DWRPCA) method is proposed to improve the performance of principal component analysis (PCA) for fault detection. The improved ReliefF-PCA algorithm is used to select the principal components instead of the traditional cumulative percent variance (CPV) criterion, so that the important information contained in the small variance is considered. The sub-models for different types of faults which are being considered the influence weights of process variables and faults are established respectively to obtain the decentralized weighted model. The Bayesian Information Criterion is adopted to integrate different types of faults for a unified monitoring index. The case study of a numerical example and the Tennessee Eastman process illustrate the effectiveness of the proposed method.
引用
收藏
页码:140478 / 140487
页数:10
相关论文
共 50 条
  • [1] Wind turbine fault diagnosis based on ReliefF-PCA and DNN
    Wen, Xiaoqiang
    Xu, Ziang
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 178
  • [2] Fault detection and diagnosis of dynamic processes using weighted dynamic decentralized PCA approach
    Tong, Chudong
    Lan, Ting
    Shi, Xuhua
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2017, 161 : 34 - 42
  • [3] Decentralized and Dynamic Fault Detection Using PCA and Bayesian Inference
    Sanchez-Fernandez, A.
    Fuente, M. J.
    Sainz-Palmero, G. I.
    [J]. 2018 IEEE 23RD INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2018, : 800 - 807
  • [4] Fault detection by decentralized dynamic PCA algorithm on mutual information
    Tong C.
    Lan T.
    Shi X.
    [J]. Huagong Xuebao/CIESC Journal, 2016, 67 (10): : 4317 - 4323
  • [5] 基于ReliefF-PCA和SVM的发动机故障诊断方法研究
    朱丽娜
    王学杰
    张进杰
    [J]. 北京化工大学学报(自然科学版), 2018, 45 (01) : 55 - 59
  • [6] Dynamic Feature Characterization Based Variable-weighted Decentralized Method for Fault Detection
    Zhong K.
    Han M.
    Han B.
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2021, 47 (09): : 2205 - 2213
  • [7] An improved weighted recursive PCA algorithm for adaptive fault detection
    Portnoy, Ivan
    Melendez, Kevin
    Pinzon, Horacio
    Sanjuan, Marco
    [J]. CONTROL ENGINEERING PRACTICE, 2016, 50 : 69 - 83
  • [8] Decentralized fault detection and isolation using bond graph and PCA methods
    Said, Maroua
    Fazai, Radhia
    Ben Abdellafou, Khaoula
    Taouali, Okba
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 99 (1-4): : 517 - 529
  • [9] Sparse PCA Support Exploration of Process Structures for Decentralized Fault Detection
    Theisen, Maximilian
    Dorgo, Gyula
    Abonyi, Janos
    Palazoglu, Ahmet
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (22) : 8183 - 8195
  • [10] Decentralized fault detection and isolation using bond graph and PCA methods
    Maroua Said
    Radhia Fazai
    Khaoula Ben Abdellafou
    Okba Taouali
    [J]. The International Journal of Advanced Manufacturing Technology, 2018, 99 : 517 - 529