This paper addresses the problem of estimating the mean matrix of an elliptically contoured distribution with an unknown scale matrix. The unbiased estimator of the mean matrix is shown to be minimax relative to a quadratic loss. This fact yields minimaxity of a matricial shrinkage estimator improving on the unbiased estimator. A positive-part rule for eigenvalues of matricial shrinkage factor provides a better estimator than the shrinkage minimax one. (C) 2009 Elsevier B.V. All rights reserved.
机构:
Europa Univ Viadrina Frankfurt Oder, Dept Stat, D-15207 Frankfurt, Oder, GermanyBowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
Bodnar, Taras
Gupta, Arjun K.
论文数: 0引用数: 0
h-index: 0
机构:
Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USABowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA