Shrinkage minimax estimation and positive-part rule for a mean matrix in an elliptically contoured distribution

被引:4
|
作者
Tsukuma, Hisayuki [1 ]
机构
[1] Toho Univ, Fac Med, Ota Ku, Tokyo 1438540, Japan
关键词
D O I
10.1016/j.spl.2009.10.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper addresses the problem of estimating the mean matrix of an elliptically contoured distribution with an unknown scale matrix. The unbiased estimator of the mean matrix is shown to be minimax relative to a quadratic loss. This fact yields minimaxity of a matricial shrinkage estimator improving on the unbiased estimator. A positive-part rule for eigenvalues of matricial shrinkage factor provides a better estimator than the shrinkage minimax one. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:215 / 220
页数:6
相关论文
共 50 条