On parallelizable Markov chain Monte Carlo algorithms with waste-recycling

被引:7
|
作者
Yang, Shihao [1 ]
Chen, Yang [2 ]
Bernton, Espen [1 ]
Liu, Jun S. [1 ]
机构
[1] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
[2] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Weighted samples; Markov chain Monte Carlo; Rao-Blackwellization; Parallel computation; Effective sample size; Estimation efficiency; METROPOLIS-HASTINGS ALGORITHMS;
D O I
10.1007/s11222-017-9780-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Parallelizable Markov chain Monte Carlo (MCMC) generates multiple proposals and parallelizes the evaluations of the likelihood function on different cores at each MCMC iteration. Inspired by Calderhead (Proc Natl Acad Sci 111(49):17408-17413, 2014), we introduce a general 'waste-recycling' framework for parallelizable MCMC, under which we show that using weighted samples from waste-recycling is preferable to resampling in terms of both statistical and computational efficiencies. We also provide a simple-to-use criteria, the generalized effective sample size, for evaluating efficiencies of parallelizable MCMC algorithms, which applies to both the waste-recycling and the vanilla versions. A moment estimator of the generalized effective sample size is provided and shown to be reasonably accurate by simulations.
引用
收藏
页码:1073 / 1081
页数:9
相关论文
共 50 条
  • [1] On parallelizable Markov chain Monte Carlo algorithms with waste-recycling
    Shihao Yang
    Yang Chen
    Espen Bernton
    Jun S. Liu
    [J]. Statistics and Computing, 2018, 28 : 1073 - 1081
  • [2] Waste-recycling Monte Carlo
    Frenkel, D.
    [J]. Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology, Vol 1, 2006, 703 : 127 - 137
  • [3] On adaptive Markov chain Monte Carlo algorithms
    Atchadé, YF
    Rosenthal, JS
    [J]. BERNOULLI, 2005, 11 (05) : 815 - 828
  • [4] Proximal Markov chain Monte Carlo algorithms
    Pereyra, Marcelo
    [J]. STATISTICS AND COMPUTING, 2016, 26 (04) : 745 - 760
  • [5] Proximal Markov chain Monte Carlo algorithms
    Marcelo Pereyra
    [J]. Statistics and Computing, 2016, 26 : 745 - 760
  • [6] Waste-recycling Monte Carlo with optimal estimates: Application to free energy calculations in alloys
    Adjanor, Gilles
    Athenes, Manuel
    Rodgers, Jocelyn M.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (04):
  • [7] Markov Chain Monte Carlo Algorithms: Theory and Practice
    Rosenthal, Jeffrey S.
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 2008, 2009, : 157 - 169
  • [8] A Markov chain perspective on adaptive Monte Carlo algorithms
    Desai, PY
    Glynn, PW
    [J]. WSC'01: PROCEEDINGS OF THE 2001 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2001, : 379 - 384
  • [9] Multiresolution genetic algorithms and Markov chain Monte Carlo
    Holloman, Christopher H.
    Lee, Herbert K. H.
    Higdon, Dave M.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (04) : 861 - 879
  • [10] Laplace expansions in Markov chain Monte Carlo algorithms
    Guthenneuc-Jouyaux, C
    Rousseau, J
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (01) : 75 - 94